1) Brunzell JD, Deeb SS. Familial lipoprotein lipase deficiency, apoc-ii deficiency, and hepatic lipase deficiency. The Metabolic and Molecular Bases of Inherited Disease. 2001; 2: 2789-816
|
|
|
2) Horst A, Paluszak J, Zawilska K, et al. Three variants of postheparin lipiprotein lipase activity in idiopathic hyperlipoproteinemia. Bull Acad Pol Sci Biol. 1973; 21: 199-202
|
|
|
3) Péterfy M, Ben-Zeev O, Mao HZ, et al. Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat Genet. 2007; 39: 1483-7
|
|
|
4) Cefalù AB, Noto D, Arpi ML, et al. Novel LMF1 nonsense mutation in a patient with severe hypertriglyceridemia. J Clin Endocrinol Metab. 2009; 94: 4584-90
|
|
|
5) Ioka RX, Kang MJ, Kamiyama S, et al. Expression cloning and characterization of a novel glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein, GPI-HBP1. J Biol Chem. 2003; 278: 7344-9
|
|
|
6) Beigneux AP, Davies BS, Gin P, et al. Glycosylphosphatidylinositol-Anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab. 2007; 5: 279-91
|
|
|
7) Gin P, Yin L, Davies BS, et al. The acidic domain of GPIHBP1 is important for the binding of lipoprotein lipase and chylomicrons. J Biol Chem. 2008; 283: 29554-62
|
|
|
8) Davies BS, Beigneux AP, Barnes RH, et al. GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab. 2010; 12: 42-52
|
|
|
9) Weinstein MM, Yin L, Beigneux AP, et al. Abnormal patterns of lipoprotein lipase release into the plasma in gpihbp1-deficient mice. J Biol Chem. 2008; 283: 34511-8
|
|
|
10) Beigneux AP, Franssen R, Bensadoun A, et al. Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler Thromb Vasc Biol. 2009; 29: 956-62
|
|
|
11) Dallinga-Thie GM, Franssen R, Mooij HL, et al. The metabolism of triglyceride-rich lipoproteins revisited: New players, new insight. Atherosclerosis. 2010; 211: 1-8
|
|
|
12) Olivecrona G, Ehrenborg E, Semb H, et al. Mutation of conserved cysteines in the ly6 domain of GPIHBP1 in familial chylomicronemia. J Lipid Res. 2010; 51: 1535-45
|
|
|
13) Franssen R, Young SG, Peelman F, et al. Chylomicronemia with low postheparin lipoprotein lipase levels in the setting of GPIHBP1 defects. Circ Cardiovasc Genet. 2010; 3: 169-78
|
|
|
14) Voss CV, Davies BS, Tat S, et al. Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1. Proc Natl Acad Sci U S A. 2011; 108: 7980-4
|
|
|
15) Beigneux AP, Gin P, Davies BS, et al. Glycosylation of asn-76 in mouse GPIHBP1 is critical for its appearance on the cell surface and the binding of chylomicrons and lipoprotein lipase. J Lipid Res. 2008; 49: 1312-21
|
|
|
16) Wang J, Hegele RA. Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650). Lipids Health Dis. 2007; 6: 23
|
|
|
17) Gin P, Beigneux AP, Davies B, et al. Normal binding of lipoprotein lipase, chylomicrons, and apo-av to GPIHBP1 containing a G56R amino acid substitution. Biochim Biophys Acta. 2007; 1771: 1464-8
|
|
|
18) Jin W, Wang X, Millar JS, et al. Hepatic proprotein convertases modulate HDL metabo-lism. Cell Metab. 2007; 6: 129-36
|
|
|
19) Romeo S, Yin W, Kozlitina J, et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J Clin Invest. 2009; 119: 70-9
|
|
|
20) Shan L, Yu XC, Liu Z, et al. The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J Biol Chem. 2009; 284: 1419-24
|
|
|
21) Koishi R, Ando Y, Ono M, et al. Angptl3 regulates lipid metabolism in mice. Nat Genet. 2002; 30: 151-7
|
|
|
22) Köster A, Chao YB, Mosior M, et al. Transgenic angiopoietin-like (angptl) 4 overexpression and targeted disruption of angptl4 and angptl3: Regulation of triglyceride metabolism. Endocrinology. 2005; 146: 4943-50
|
|
|
23) Willer CJ, Sanna S, Jackson AU, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008; 40: 161-9
|
|
|
24) Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008; 40: 189-97
|
|
|
25) Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010; 363: 2220-7
|
|
|
26) Sukonina V, Lookene A, Olivecrona T, et al. Angiopoietin-Like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci U S A. 2006; 103: 17450-5
|
|
|
27) Romeo S, Pennacchio LA, Fu Y, et al. Population-Based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat Genet. 2007; 39: 513-6
|
|
|
28) Kathiresan S, Willer CJ, Peloso GM, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009; 41: 56-65
|
|
|
29) Pennacchio LA, Olivier M, Hubacek JA, et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science. 2001; 294: 169-73
|
|
|
30) van der Vliet HN, Sammels MG, Leegwater AC, et al. Apolipoprotein A-V: A novel apolipoprotein associated with an early phase of liver re-generation. J Biol Chem. 2001; 276: 44512-20
|
|
|
31) Kluger M, Heeren J, Merkel M. Apoprotein A-V: An important regulator of triglyceride metabo-lism. J Inherit Metab Dis. 2008; 31: 281-8
|
|
|
32) Kao JT, Wen HC, Chien KL, et al. A novel genetic variant in the apolipoprotein A5 gene is associated with hypertriglyceridemia. Hum Mol Genet. 2003; 12: 2533-9
|
|
|
33) Pullinger CR, Aouizerat BE, Movsesyan I, et al. An apolipoprotein A-V gene SNP is associated with marked hypertriglyceridemia among asian-american patients. J Lipid Res. 2008; 49: 1846-54
|
|
|
34) Dorfmeister B, Zeng WW, Dichlberger A, et al. Effects of six APOA5 variants, identified in patients with severe hypertriglyceridemia, on in vitro lipoprotein lipase activity and receptor binding. Arterioscler Thromb Vasc Biol. 2008; 28: 1866-71
|
|
|
35) Pollin TI, Damcott CM, Shen H, et al. A null muta-tion in human APOC3 confers a favorable plasma- lipid profile and apparent cardioprotection. Science. 2008; 322: 1702-5
|
|
|
36) Sundaram M, Zhong S, Bou Khalil M, et al. Functional analysis of the missense APOC3 mutation ala23thr associated with human hypotriglyceridemia. J Lipid Res. 2010; 51: 1524-34
|
|
|
37) Mahley RW, Huang Y. Atherogenic remnant lipoproteins: Role for proteoglycans in trapping, transferring, and internalizing. J Clin Invest. 2007; 117: 94-8
|
|
|
38) Rohlmann A, Gotthardt M, Hammer RE, et al. Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J Clin Invest. 1998; 101: 689-95
|
|
|
39) Bishop JR, Stanford KI, Esko JD. Heparan sulfate proteoglycans and triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol. 2008; 19: 307-13
|
|
|
40) Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007; 446: 1030-7
|
|
|
41) MacArthur JM, Bishop JR, Stanford KI, et al. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J Clin Invest. 2007; 117: 153-64
|
|
|
42) Stanford KI, Bishop JR, Foley EM, et al. Syn-decan-1 is the primary heparan sulfate proteo-glycan mediating hepatic clearance of trigly-ceride-rich lipoproteins in mice. J Clin Invest. 2009; 119: 3236-45
|
|
|
43) Stanford KI, Wang L, Castagnola J, et al. Heparan sulfate 2-o-sulfotransferase is required for triglyceride-rich lipoprotein clearance. J Biol Chem. 2010; 285: 286-94
|
|
|
44) Takahashi S, Sakai J, Fujino T, et al. The very low density lipoprotein (VLDL) receptor-a peripheral lipoprotein receptor for remnant lipoproteins into fatty acid active tissues. Mol Cell Biochem. 2003; 248: 121-7
|
|
|
45) Yagyu H, Lutz EP, Kako Y, et al. Very low density lipoprotein (VLDL) receptor-deficient mice have reduced lipoprotein lipase activity. Possible causes of hypertriglyceridemia and reduced body mass with VLDL receptor deficiency. J Biol Chem. 2002; 277: 10037-43
|
|
|
46) Goudriaan JR, Tacken PJ, Dahlmans VE, et al. Protection from obesity in mice lacking the VLDL receptor. Arterioscler Thromb Vasc Biol. 2001; 21: 1488-93
|
|
|
47) Hofmann SM, Zhou L, Perez-Tilve D, et al. Adipocyte LDL receptor-related protein-1 expression modulates postprandial lipid transport and glucose homeostasis in mice. J Clin Invest. 2007; 117: 3271-82
|
|
|
48) Weinstein MM, Yin L, Tu Y, et al. Chyl-omicronemia elicits atherosclerosis in mice-brief report. Arterioscler Thromb Vasc Biol. 2010; 30: 20-3
|
|
|
49) Grundy SM. Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. Am J Cardiol. 1998; 81: 18B-25B
|
|
|
50) Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab. 2011; 22: 353-63
|
|
|
51) Adiels M, Olofsson SO, Taskinen MR, et al. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008; 28: 1225-36
|
|
|
52) Parks EJ, Hellerstein MK. Thematic review series: Patient-Oriented research. Recent advances in liver triacylglycerol and fatty acid metabolism using stable isotope labeling techniques. J Lipid Res. 2006; 47: 1651-60
|
|
|
53) Ferré P, Foufelle F. Hepatic steatosis: A role for de novo lipogenesis and the transcription factor srebp-1c. Diabetes Obes Metab. 2010; 12 Suppl 2: 83-92
|
|
|
54) Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005; 115: 1343-51
|
|
|
55) Brown MS, Goldstein JL. Cholesterol feedback: From schoenheimerʼs bottle to scapʼs MELADL. J Lipid Res. 2009; 50 Suppl: S15-27
|
|
|
56) Brown MS, Goldstein JL. Selective versus total insulin resistance: A pathogenic paradox. Cell Metab. 2008; 7: 95-6
|
|
|
57) Okazaki H, Goldstein JL, Brown MS, et al. Lxr-Srebp-1C-Phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J Biol Chem. 2010; 285: 6801-10
|
|
|
58) Tall AR, Krumholz S, Olivecrona T, et al. Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis. J Lipid Res. 1985; 26: 842-51
|
|
|
59) Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta. 2011 Jun 28. Epub ahead of print
|
|
|
60) Saxena R, Voight BF, Lyssenko V, et al. Genome-Wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007; 316: 1331-6
|
|
|
61) Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010; 466: 707-13
|
|
|
62) Johansen CT, Wang J, Lanktree MB, et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet. 2010; 42: 684-7
|
|
|
63) Burkhardt R, Toh SA, Lagor WR, et al. Trib1 is a lipid- and myocardial infarction-associated gene that regulates hepatic lipogenesis and VLDL production in mice. J Clin Invest. 2010; 120: 4410-4
|
|
|
64) Musunuru K, Strong A, Frank-Kamenetsky M, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010; 466: 714-9
|
|
|
65) Kjolby M, Andersen OM, Breiderhoff T, et al. Sort1, encoded by the cardiovascular risk locus 1p13. 3, is a regulator of hepatic lipoprotein export. Cell Metab. 2010; 12: 213-23
|
|
|
66) Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res. 2011; 52: 189-206
|
|
|
67) Hegele RA, Ban MR, Hsueh N, et al. A polygenic basis for four classical fredrickson hyperlipo-proteinemia phenotypes that are characterized by hypertriglyceridemia. Hum Mol Genet. 2009; 18: 4189-94
|
|
|
68) Brunzell JD. Clinical practice. Hyper-triglyceridemia. N Engl J Med. 2007; 357: 1009-17
|
|
|
69) Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors Collaboration, Sarwar N, Sandhu MS, Ricketts SL, et al. Triglyceride-Mediated pathways and coronary disease: Collaborative analysis of 101 studies. Lancet. 2010; 375: 1634-9
|
|
|
70) Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007; 298: 309-16
|
|
|
71) Nordestgaard BG, Benn M, Schnohr P, et al. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007; 298: 299-308
|
|
|
72) Fruchart JC, Sacks FM, Hermans MP. Inter-national Steering Committee of R(3)i. Implications of the ACCORD lipid study: Perspective from the residual risk reduction initiative〔R(3)i〕. Curr Med Res Opin. 2010; 26: 1793-7
|
|
|