1) Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004; 116: 337-50
|
|
|
2) Haffner S, Taegtmeyer H. Epidemic obesity and the metabolic syndrome. Circulation. 2003; 108: 1541-5
|
|
|
3) Katagiri H, Yamada T, Oka Y. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Cir Res. 2007; 101: 27-39
|
|
|
4) Schwartz MW, Porte D Jr. Diabetes, Obesity, and the Brain. Science. 2005; 307: 375-9
|
|
|
5) Gautron L, Elmquist JK. Sixteen years and counting: an update on leptin in energy balance. J Clin Invest. 2011; 121: 2087-93
|
|
|
6) Phillips SA, Kung JT. Mechanisms of adiponectin regulation and use as a pharmacological target. Curr Opin Pharmacol. 2010; 10: 676-83
|
|
|
7) Misu H, Takamura T, Takayama H, et al. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab. 2010; 12: 483-95
|
|
|
8) Ouchi N, Higuchi A, Ohashi K, et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science. 2010; 329: 454-7
|
|
|
9) Lee NK, Sowa H, Hinoi E, et al. Endocrine Regulation of Energy Metabolism by the Skelton. Cell. 2007; 130: 456-69
|
|
|
10) Pocai A, Obici S, Schwartz GJ, et al. A brain-liver circuit regulates glucose homeostasis. Cell Metab. 2005; 1: 53-61
|
|
|
11) Lam TK, Gutierrez-Juarez R, Pocai A, et al. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005; 309: 943-7
|
|
|
12) Lam TK, Gutierrez-Juarez R, Pocai A, et al. Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins. Nat Med. 2007; 13: 171-80
|
|
|
13) Uno K, Katagiri H, Yamada T, et al. Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science. 2007; 312: 1656-9
|
|
|
14) Imai J, Katagiri H, Yamada T, et al. Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science. 2008; 322: 1250-4
|
|
|
15) Sandoval DA, Obici S, Seeley RJ. Targeting the CNS to treat type 2 diabetes. Nat Rev Drug Discov. 2009; 8: 386-98
|
|
|
16) Kitamura T, Kahn CR, Accili D. Insulin receptor konckout mice. Annu Rev Physiol. 2003; 65: 313-32
|
|
|
17) Brüning JC, Gautam D, Burks DJ, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000; 289: 2122-5
|
|
|
18) Loftus TM, Jaworsky DE, Frehywot GL, et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science. 2000; 288: 2379-81
|
|
|
19) Pocai A, Lam TK, Gutierrez-Juarez R, et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005; 434: 1026-31
|
|
|
20) Obici S, Feng Z, Morgan K, et al. Central ad-ministration of oleic acid inhibits glucose produc-tion and food intake. Diabetes. 2002; 51: 271-5
|
|
|
21) Lam TK, Pocai A, Gutierrez-Juarez R. Hypo-thalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005; 11: 320-7
|
|
|
22) German J, Kim F, Schwartz GJ, et al. Hypo-thalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology. 2009; 150: 4502-11
|
|
|
23) Caspi L, Wang PY, Lam TK. A Balance of Lipid-Sensing Mechanisms in the Brain and Liver. Cell Metab. 2007; 6: 99-104
|
|
|
24) Scherer T, OʼHare J, Diggs-Andrews K, et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011; 13: 183-94
|
|
|
25) Buettner C, Muse ED, Cheng A, et al. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med. 2008; 14: 667-75
|
|
|
26) López M, Varela L, Vázquez MJ, et al. Hypo-thalamic AMPK and fatty acid metabolism medi-ate thyroid regulation of energy balance. Nat Med. 2010; 16: 1001-8
|
|
|
27) Yamada T, Katagiri H, Ishigaki Y, et al. Signals from intra-abdominal fat modulate insulin and leptin sensitivity through different mechanisms: Neuronal involvement in food-intake regulation. Cell Metab. 2006; 3: 223-9
|
|
|
28) An J, Muoio DM, Shiota M, et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med. 2005; 10: 268-74
|
|
|
29) Ishigaki Y, Katagiri H, Yamada T, et al. Dissipating excess energy stored in the liver is a potential therapeutic target for diabetes associated with obesity. Diabetes. 2005; 54: 322-32
|
|
|
30) Rahimian R, Masih-Khan E, Lo M, et al. Hepatic over-expression of peroxisome proliferator activated receptor gamma2 in the ob/ob mouse model of non-insulin dependent diabetes mellitus. Mol Cell Biochem. 2001; 224: 29-37
|
|
|
31) Westerbacka J, Kolak M, Kiviluoto T, et al. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes. 2007; 56: 2759-65
|
|
|
32) Bernal-Mizrachi C, Xiaozhong L, Yin L, et al. An afferent vagal nerve pathway links hepatic PPARalpha activation to glucocorticoid-induced insulin resistance and hypertension. Cell Metab. 2007; 5: 91-102
|
|
|
33) Wang PY, Caspi L, Lam CK, et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature. 2008; 452: 1012-6
|
|
|
34) Cheung GW, Kokorovic A, Lam CK, et al. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 2009; 10: 99-109
|
|
|
35) Kokorovic A, Cheung GW, Breen DM, et al. Duodenal Mucosal Protein Kinase C-δ Regulates Glucose Production in Rats. Gastroenterology. 2011; 141: 1720-7
|
|
|
36) Uno K, Yamada T, Ishigaki Y, et al. Hepatic peroxisome proliferator-activated receptor-γ-fat-specific protein 27 pathway contributes to obesity-related hypertension via afferent vagal signals. Eur Heart J. 2011 Aug 8. Epub ahead of print
|
|
|
37) Eikelis N, Schlaich M, Aggarwal A, et al. Interactions between leptin and the human sympathetic nervous system. Hypertension. 2003; 41: 1072-9
|
|
|
38) Rahmouni K, Morgan DA, Morgan GM, et al. Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes. 2005; 54: 2012-8
|
|
|
39) Gong J, Sun Z, Li P. CIDE proteins and metabolic disorders. Curr Opin Lipidol. 2009; 20: 121-6
|
|
|
40) Matsusue K. A physiological role for fat specific protein 27/cell death-inducing DFF45-like effector C in adipose and liver. Biol Pharm Bull. 2010; 33: 346-50
|
|
|
41) Matsusue K, Kusakabe T, Noguchi T, et al. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab. 2008; 7: 302-11
|
|
|
42) Nishino N, Tamori Y, Tateya S, et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest. 2008; 118: 2808-21
|
|
|
43) Yamazaki T, Sasaki E, Kakinuma C, et al. Increased very low density lipoprotein secretion and gonadal fat mass in mice overexpressing liver DGAT1. J Biol Chem. 2005; 280: 21506-14
|
|
|
44) Lam TK. Neuronal regulation of homeostasis by nutrient sensing. Nat Med. 2010; 16: 392–5
|
|
|