1) Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007; 132: 2131-57
|
|
|
2) Zhang CL, Katoh M, Shibasaki T, et al. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science. 2009; 325: 607-10
|
|
|
3) Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev. 2005; 85: 1303-42
|
|
|
4) Ozaki N, Shibasaki T, Kashima Y, et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol. 2000; 2: 805-11
|
|
|
5) Kashima Y, Miki T, Shibasaki T, et al. Critical role of cAMP-GEFII・Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem. 2001; 276: 46046-53
|
|
|
6) Shibasaki T, Takahashi H, Miki T, et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A. 2007; 104: 19333-8
|
|
|
7) de Rooij J, Zwartkruis FJ, Verheijen MH, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998; 396: 474-7
|
|
|
8) Kawasaki H, Springett GM, Mochizuki N, et al. A family of cAMP-binding proteins that directly activate Rap1. Science. 1998; 282: 2275-9
|
|
|
9) Ueno H, Shibasaki T, Iwanaga T, et al. Chara-cterization of the gene EPAC2: structure, chromo-somal localization, tissue expression, and identifi-cation of the liver-specific isoform. Genomics. 2001; 78: 91-8
|
|
|
10) Niimura M, Miki T, Shibasaki T, et al. Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function. J Cell Physiol. 2009; 219: 652-8
|
|
|
11) Rehmann H, Das J, Knipscheer P, et al. Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature. 2006; 439: 625-8
|
|
|
12) Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002; 359: 824-30
|
|
|
13) Yasuda T, Shibasaki T, Minami K, et al. Rim2alpha determines docking and priming States in insulin granule exocytosis. Cell Metab. 2010; 12: 117-29
|
|
|
14) Gloerich M, Bos JL. Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol. 2010; 50: 355-75
|
|
|
15) Kang G, Chepurny OG, Holz GG. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells. J Physiol. 2001; 536: 375-85
|
|
|
16) Kang G, Chepurny OG, Malester B, et al. cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells. J Physiol. 2006; 573: 595-609
|
|
|
17) Dzhura I, Chepurny OG, Kelley GG, et al. Epac2-dependent mobilization of intracellular Ca2+ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in {beta}-cells of phospholipase C- knockout mice. J Physiol. 2010; 588: 4871-89
|
|
|
18) Dzhura I, Chepurny OG, Leech CA, et al. Phospholipase C-epsilon links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans. Islets. 2011; 3: 121-8
|
|
|
19) Kominato R, Fujimoto S, Mukai E, et al. Src activation generates reactive oxygen species and impairs metabolism-secretion coupling in diabetic Goto-Kakizaki and ouabain-treated rat pancreatic islets. Diabetologia. 2008; 51: 1226-35
|
|
|
20) Mukai E, Fujimoto S, Sato H, et al. Exendin-4 suppresses SRC activation and reactive oxygen species production in diabetic Goto-Kakizaki rat islets in an Epac-dependent manner. Diabetes. 2011; 60: 218-26
|
|
|
21) Seino S, Zhang CL, Shibasaki T. Sulfonylurea action re-revisited. J Diabetes Invest. 2010; 1: 37-9
|
|
|
22) Kelly P, Bailey CL, Fueger PT, et al. Rap1 promotes multiple pancreatic islet cell functions and signals through mammalian target of rapamycin complex 1 to enhance proliferation. J Biol Chem. 2010; 285: 15777-85
|
|
|