1) McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol. 2007; 8: 913-9
|
|
|
2) Weiner HL. The challenge of multiple sclerosis: how do we cure a chronic heterogeneous dis-ease? Ann Neurol. 2009; 65: 239-48
|
|
|
3) Coffman RL. Origins of the T(H)1-T(H)2 model: a personal perspective. Nat Immunol. 2006; 7: 539-41
|
|
|
4) Cua DJ, Sherlock J, Chen Y, et al: Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003; 421: 744-8
|
|
|
5) Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest. 2006; 116: 1218-22
|
|
|
6) Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells. Annu Rev Immunol. 2009; 27: 485-517
|
|
|
7) Boniface K, Bak Jensen KS, Li Y, et al. Pro-staglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med. 2009; 206: 535-48
|
|
|
8) Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007; 317: 256-60
|
|
|
9) Veldhoen M, Hirota K, Westendorf AM, et al. The aryl hydrocarbon receptor links T(H)17-cell-mediated autoimmunity to environmental toxins. Nature. 2008; 453: 106-9
|
|
|
10) Hofstetter HH, Ibrahim SM, Koczan D, et al. Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalo-myelitis. Cell Immunol. 2005; 237: 123-30
|
|
|
11) Cosmi L, De Palma R, Santarlasci V, et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J Exp Med. 2008; 205: 1903-16
|
|
|
12) Acosta Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007; 8: 639-46
|
|
|
13) Tzartos JS, Friese MA, Craner MJ, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol. 2008; 172: 146-55
|
|
|
14) Brucklacher-Waldert V, Stuerne K, Kolster M, et al. Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain. 2009; 132: 3329-41
|
|
|
15) Polman CH, OʼConnor PW, Havrdova E, et al. A randomized, placebo-controlled trial of nata-lizumab for relapsing multiple sclerosis. N Engl J Med. 2006; 354: 899-910
|
|
|
16) Mahad D, Callahan MK, Williams KA, et al. Modulating CCR2 and CCL2 at the blood-brain barrier: relevance for multiple sclerosis patho-genesis. Brain. 2006; 129: 212-23
|
|
|
17) Leppert D, Ford J, Stabler, G, et al. Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain. 1998; 121: 2327-34
|
|
|
18) Sato W, Aranami T, Yamamura T. Cutting edge: Human Th17 cells are identified as bearing CCR2+CCR5- phenotype. J Immunol. 2007; 178: 7525-9
|
|
|
19) Singh SP, Zhang HH, Foley JF, et al. Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J Immunol. 2008; 180: 214-21
|
|
|
20) Reboldi A, Coisne C, Baumjohann D, et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009; 10: 514-23
|
|
|
21) Kebir H, Kreymborg K, Ifergan I, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflam-mation. Nat Med. 2007; 13: 1173-5
|
|
|
22) Ifergan, I, Kebir, H, Bernard, et al. The blood brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain. 2008; 131: 785-99
|
|
|
23) Kebir H, Ifergan I, Alvarez JI, et al. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol. 2009; 66: 390-402
|
|
|
24) Hirota K, Duarte JH, Veldhoen M, et al. Fate mapping of IL-17-producing T cells in inflam-matory responses. Nat Immunol. 2011; 12: 255-63
|
|
|
25) Wei G, Wei L, Zhu J, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differ-entiating CD4+ T cells. Immunity. 2009; 30: 155-67
|
|
|
26) Annunziato F, Romagnani S. The transient nature of the Th17 phenotype. Eur J Immunol. 2010; 40: 3312-6
|
|
|
27) Domingues HS, Mues M, Lassmann H, et al. Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS One. 2010; 5: e15531
|
|
|
28) Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008; 453: 236-40
|
|
|
29) Zhou X, Bailey Bucktrout SL, Jeker LT, et al Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. 2009; 10: 1000-7
|
|
|
30) Beriou G, Costantino CM, Ashley CW, et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood. 2009; 113: 4240-9
|
|
|
31) Voo KS, Wang YH, Santori FR, et al. Iden-tification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A. 2009; 106: 4793-8
|
|
|
32) Mehling M, Lindberg R, Raulf F, et al. Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology. 2010; 75: 403-10
|
|
|
33) Piccio L, Naismith RT, Trinkaus K, et al. Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis. Arch Neurol. 2010; 67: 707-14
|
|
|
34) Leonardi CL, Kimball AB, Papp KA, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008; 371: 1665-74
|
|
|
35) Segal BM, Constantinescu CS, Raychaudhuri A, et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 2008; 7: 796-804
|
|
|
36) Serada S, Fujimoto M, Mihara M, et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2008; 105: 9041-6
|
|
|
37) Doi Y, Oki S, Ozawa T, et al. Orphan nuclear receptor NR4A2 expressed in T cells from multiple sclerosis mediates production of inflammatory cytokines. Proc Natl Acad Sci U S A. 2008; 105: 8381-6
|
|
|
38) Mucida D, Park Y, Kim G, et al. Reciprocal Th-17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007; 317: 256-60
|
|
|
39) Klemann C, Raveney BJ, Klemann AK, et al. Synthetic retinoid AM80 inhibits Th17 cells and ameliorates experimental autoimmune encepha-lomyelitis. Am J Pathol. 2009; 174: 2234-45
|
|
|
40) Durelli L, Conti L, Clerico M, et al. T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol. 2009; 65: 499-509
|
|
|
41) Axtell RC, de Jong BA, Boniface K, et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med. 2011; 16: 406-12
|
|
|
42) Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004; 364: 2106-12
|
|
|
43) Misu T, Fujihara K, Kakita A, et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain. 2007; 130: 1224-34
|
|
|
44) Wingerchuk DM, Lennon VA, Pittock SJ, et al. Revised diagnostic criteria for neuromyelitis optica. Neurology. 2006; 66: 1485-9
|
|
|
45) Ishizu T, Osoegawa M, Mei FJ, et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain. 2009; 128: 988-1002
|
|
|
46) Warabi Y, Matsumoto Y, Hayashi H. Interferon beta-1b exacerbates multiple sclerosis with severe optic nerve and spinal cord demyeli-nation. J Neurol Sci. 2007; 252: 57-61
|
|
|
47) Shimizu J, Hatanaka Y, Hasegawa M, et al. IFNbeta-1b may severely exacerbate Japanese optic-spinal MS in neuromyelitis optica spectrum. Neurology. 2010; 75: 1423-7
|
|
|
48) Axtell RC, Raman C, Steinman L. Interferon-beta exacerbates Th17-mediated inflammatory dis-ease. Trends Immunol. 2011; 32: 272-7
|
|
|
49) Disanto G, Berlanga AJ, Handel AE, et al. Heterogeneity in multiple sclerosis: scratching the surface of a complex disease. Autoimmune Dis. 2010; 2011: 932351
|
|
|
50) Lucchinetti C, Bruck W, Parisi J, et al. Heterogeneity of multiple sclerosis lesions: impli-cations for the pathogenesis of demyelination. Ann Neurol. 2000; 47: 707-17
|
|
|