1) Strotmeier J, Lee K, Völker AK, et al. Botulinum neurotoxin serotype D attacks neurons via two carbohydrate binding sites in a ganglioside dependent manner. Biochem J. 2010; 431: 207-16
|
|
|
2) Peng L, Tepp WH, Johnson EA, et al. Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS Pathog. 2011; 7: e1002008
|
|
|
3) Tsukamoto K, Kohda T, Mukamoto M, et al. Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins. J Biol Chem. 2005; 280: 35164-71
|
|
|
4) Dong M, Tepp WH, Liu H, et al. Mechanism of botulinum neurotoxin B and G entry into hippo-campal neurons. J Cell Biol. 2007; 179: 1511-22
|
|
|
5) Rummel A, Hafner K, Mahrhold S, et al. Botulinum neurotoxins C, E and F bind gangli-osides via a conserved binding site prior to stimu-lation dependent uptake with botulinum neuro-toxin f utilising the three isoforms of SV2 as second receptor. J Neurochem. 2009; 110: 1942-54
|
|
|
6) Meng J, Wang J, Lawrence G, et al. Synapto-brevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci. 2007; 120: 2864-74
|
|
|
7) Nuemket N, Tanaka Y, Tsukamoto K, et al. Preliminary X-ray crystallographic study of the receptor-binding domain of the D/C mosaic neurotoxin from Clostridium botulinum. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010; 66: 608-10
|
|
|
8) Schmitt J, Karalewitz A, Benefield DA, et al. Structural analysis of botulinum neurotoxin type G receptor binding. Biochemistry. 2010; 49: 5200-5
|
|
|
9) Fernandez-Salas E, Garay P, Jacky B, et al. Identification of the fibroblast growth factor receptor FGFR3 as a component of the receptor complex for botulinum neurotoxin type A. Toxicon. 2008; 51 Suppl 1: 3
|
|
|
10) Oguma K, Inoue K, Fujinaga Y, et al. Structure and function of Clostridium botulinum progenitor toxin. J Toxicol-Toxin Rev. 1999; 18: 17-34
|
|
|
11) Lietzow MA, Gielow ET, Le D, et al. Subunit stoichiometry of the Clostridium botulinum type A neurotoxin complex determined using denatu-ring capillary electrophoresis. Protein J. 2008; 27: 420-5
|
|
|
12) Eisele K-H, Fink K, Vey M, et al. Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon. 2011; 57: 555-65
|
|
|
13) Koshy J, Sharabi1 S, Feldman E, et al. Effect of dietary zinc supplementation on botulinum toxin treatments: a modified randomized, double-blind, placebo-controlled, crossover pilot study (abstr). ASOPRS 41st Annual Fall Scientific Symposium (Chicago, IL). 2010. p.8
|
|
|
14) Heckmann M, Teichmann B, Schröder U, et al. Pharmacologic denervation of frown muscles enhances baseline expression of heppiness and decreases baseline expression of anger, sadness, and fear. J Am Acad Dermatol. 2003; 49: 213-6
|
|
|
15) Hennenlotter A, Dresel C, Castrop F, et al. The link between facial feedback and neural activity within central circuitries of emotion--new insights from botulinum toxin-induced denervation of frown muscles. Cereb Cortex. 2009; 19: 537-42
|
|
|
16) Finzi E, Wasserman E. Treatment of depression with botulinum toxin A: A case series. Dermatol Surg. 2006; 32: 645-9; discussion 649-50
|
|
|
17) Lewis MB, Bowler PJ. Botulinum toxin cosmetic therapy correlates with a more positive mood. J Cosmet Dermatol. 2009; 8: 24-6
|
|
|
18) Alam M, Barrett KC, Hodapp RM, et al. Botulinum toxin and the facial feedback hypoth-esis: can looking better make you feel happier? J Am Acad Dermatol. 2008; 58: 1061-72
|
|
|
19) Havas DA, Glenberg AM, Gutowski KA, et al. Cosmetic use of botulinum toxin-A affects processing of emotional language. Psychol Sci. 2010; 21: 895-900
|
|
|
20) Davis JI, Senghas A, Brandt F, et al. The effects of Botox injections on emotional experience. Emotion. 2010; 10: 433-40
|
|
|
21) Neal DT, Chartrand TL. Embodied emotion perception: amplifying and dampening facial feedback modulates emotion perception accu-racy. Soc Psychol Personal Sci. 2011 [Epub ahead of print]
|
|
|
22) Antonucci F, Rossi C, Gianfranceschi L, et al. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci. 2008; 28: 3689-96
|
|
|
23) 鳥居恭司, 赤池紀生, 原川哲博, 他. 低分子量ボツリヌス毒素製剤A2NTXはA1毒素よりも拡散しない(会). 臨床神経. 2009; 49: 1000
|
|
|
24) 清水利彦, 柴田 護, 鳥海春樹, 他. A型ボツリヌス毒素の三叉神経節における TRPV1 発現への影響—投与量による比較検討—(会). 日頭痛会誌. 2009; 36: 84
|
|
|
25) Bach-Rojecky L, Lackovic Z. Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav. 2009; 94: 234-8
|
|
|
26) Lee W-H, Shin T-J, Kim HJ, et al. Intrathecal administration of botulinum neurotoxin type A attenuates formalin-induced nociceptive re-sponses in mice. Anesth Analg. 2011; 112: 228-35
|
|
|
27) Meng J, Ovsepian SV, Wang J, et al. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci. 2009; 29: 4981-92
|
|
|
28) Wang J, Meng J, Lawrence GW, et al. Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, trans-location, and protease domains to their func-tional characteristics. J Biol Chem. 2008; 283: 16993-7002
|
|
|
29) Chen S, Barbieri JT. Engineering botulinum neurotoxin to extend therapeutic intervention. Proc Natl Acad Sci U S A. 2009; 106: 9180-4
|
|
|
30) Chaddock JA, Purkiss JR, Duggan MJ, et al. A conjugate composed of nerve growth factor coupled to a non-toxic derivative of Clostridium botulinum neurotoxin type A can inhibit neuro-transmitter release in vitro. Growth Factors. 2000; 18: 147-55
|
|
|
31) Chaddock JA, Purkiss JR, Friis LM, et al. Inhibition of vesicular secretion in both neuronal and nonneuronal cells by a retargeted endo-peptidase derivative of Clostridium botulinum neurotoxin type A. Infect Immun. 2000; 68: 2587-93
|
|
|
32) Duggan MJ, Quinn CP, Chaddock JA, et al. Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin. J Biol Chem. 2002; 277: 34846-52
|
|
|
33) Foster KA, Adams EJ, Durose L, et al. Re-engineering the target specificity of Clostridial neurotoxins - a route to novel therapeutics. Neurotox Res. 2006; 9: 101-7
|
|
|
34) Bade S, Rummel A, Reisinger C, et al. Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J Neurochem. 2004; 91: 1461-72
|
|
|
35) Zhang P, Ray R, Singh BR, et al. An efficient drug delivery vehicle for botulism countermeasure. BMC Pharmacology. 2009; 9: 12
|
|
|
36) Band PA, Blais S, Neubert TA, et al. Recombinant derivatives of botulinum neurotoxin A engineered for trafficking studies and neuronal delivery. Protein Expr Purif. 2010; 71: 62-73
|
|
|
37) Fahrer J, Plunien R, Binder U, et al. Genetically engineered clostridial C2 toxin as a novel deliv-ery system for living mammalian cells. Bioconjug Chem. 2010; 21: 130-9
|
|
|
38) Fahrer J, Funk J, Lillich M, et al. Internalization of biotinylated compounds into cancer cells is promoted by a molecular Trojan horse based upon core streptavidin and clostridial C2 toxin. Naunyn Schmiedebergs Arch Pharmacol. 2011; 383: 263-73
|
|
|
39) Knight A, Carvajal J, Schneider H, et al. Non-viral neuronal gene delivery mediated by the HC fragment of tetanus toxin. Eur J Biochem. 1999; 259: 762-9
|
|
|
40) Box M, Parks DA, Knight A, et al. A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J Drug Target. 2003; 11: 333-43
|
|
|
41) Andreu A, Fairweather N, Miller AD. Clostridium neurotoxin fragments as potential targeting moieties for liposomal gene delivery to the CNS. Chembiochem. 2008; 9: 219-31
|
|
|
42) Schneider H, Groves M, Muhle C, et al. Re-targeting of adenoviral vectors to neurons using the Hc fragment of tetanus toxin. Gene Ther. 2000; 7: 1584-92
|
|
|
43) Drachman DB, Adams RN, Balasubramanian U, et al. Strategy for treating motor neuron diseases using a fusion protein of botulinum toxin binding domain and streptavidin for viral vector access: work in progress. Toxins. 2010; 2: 2872-89
|
|
|
44) Pickett A, Perrow K. Towards new uses of botulinum toxin as a novel therapeutic tool. Toxins. 2011; 3: 63-81
|
|
|