1) Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997; 275: 1593-9
|
|
|
2) Tobler PN, Fiorillo CD, Schultz W. Adaptive coding of reward value by dopamine neurons. Science. 2005; 307: 1642-5
|
|
|
3) Kobayashi S, Schultz W. Influence of reward delays on responses of dopamine neurons. J Neurosci. 2008; 28: 7837-46
|
|
|
4) Dalley JW, Fryer TD, Brichard L, et al. Nucleus accumbens D2/3 receptors predict trait impul-sivity and cocaine reinforcement. Science. 2007; 315: 1267-70
|
|
|
5) Buckholtz JW, Treadway MT, Cowan RL, et al. Dopaminergic network differences in human impulsivity. Science. 2010; 329: 532
|
|
|
6) Tripp G, Wickens JR. Neurobiology of ADHD. Neuropharmacology. 2009; 57: 579-89
|
|
|
7) Volkow ND, Wang GJ, Kollins SH, et al. Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA. 2009; 302: 1084-91
|
|
|
8) Molina JA, Sainz-Artiga MJ, Fraile A, et al. Pathologic gambling in Parkinsonʼs disease: a behavioral manifestation of pharmacologic treatment? Mov Disord. 2000; 15: 869-72
|
|
|
9) Gescheidt T, Bares M. Impulse control disorders in patients with Parkinsonʼs disease. Acta Neurol Belg. 2011; 111: 3-9
|
|
|
10) Wolters E, van der Werf YD, van den Heuvel OA. Parkinsonʼs disease-related disorders in the impulsive-compulsive spectrum. J Neurol. 2008; 255 Suppl 5: 48-56
|
|
|
11) Bechara A, Damasio H, Damasio AR, et al. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci. 1999; 19: 5473-81
|
|
|
12) Kobayakawa M, Koyama S, Mimura M, et al. Decision making in Parkinsonʼs disease: Analysis of behavioral and physiological patterns in the Iowa gambling task. Mov Disord. 2008; 23: 547-52
|
|
|
13) Pagonabarraga J, Garcia-Sanchez C, Llebaria G, et al. Controlled study of decision-making and cognitive impairment in Parkinsonʼs disease. Mov Disord. 2007; 22: 1430-5
|
|
|
14) Poletti M, Frosini D, Lucetti C, et al. Decision making in de novo Parkinsonʼs disease. Mov Disord. 2010; 25: 1432-6
|
|
|
15) Steeves TD, Miyasaki J, Zurowski M, et al. Increased striatal dopamine release in Parkin-sonian patients with pathological gambling: a [11C] raclopride PET study. Brain. 2009; 132: 1376-85
|
|
|
16) Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010; 67: 589-95
|
|
|
17) Rodriguez-Oroz MC, Lopez-Azcarate J, Garcia-Garcia D, et al. Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinsonʼs disease. Brain. 2011; 134: 36-49
|
|
|
18) Mallet L, Schupbach M, NʼDiaye K, et al. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci U S A. 2007; 104: 10661-6
|
|
|
19) Greenhouse I, Gould S, Houser M, et al. Stimulation at dorsal and ventral electrode contacts targeted at the subthalamic nucleus has different effects on motor and emotion functions in Parkinsonʼs disease. Neuropsychologia. 2011; 49: 528-34
|
|
|
20) Thobois S, Ardouin C, Lhommee E, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinsonʼs disease: predictors and underlying mesolimbic denervation. Brain. 2010; 133: 1111-27
|
|
|
21) Gupta M, Chauhan C, Bhatnagar P, et al. Genetic susceptibility to schizophrenia: role of dopaminergic pathway gene polymorphisms. Pharmacogenomics. 2009; 10: 277-91
|
|
|
22) Cools R, Sheridan M, Jacobs E, et al. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during com-ponent processes of working memory. J Neurosci. 2007; 27: 5506-14
|
|
|
23) Aalto S, Bruck A, Laine M, et al. Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: a positron emission tomography study using the high-affinity dopamine D2 receptor ligand [11C] FLB 457. J Neurosci. 2005; 25: 2471-7
|
|
|
24) Takahashi H, Kato M, Takano H, et al. Dif-ferential contributions of prefrontal and hippo-campal dopamine D(1) and D(2) receptors in human cognitive functions. J Neurosci. 2008; 28: 12032-8
|
|
|
25) McNab F, Varrone A, Farde L, et al. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science. 2009; 323: 800-2
|
|
|
26) Dickinson D, Elvevag B. Genes, cognition and brain through a COMT lens. Neuroscience. 2009; 164: 72-87
|
|
|
27) Blasi G, Mattay VS, Bertolino A, et al. Effect of catechol-O-methyltransferase val158met geno-type on attentional control. J Neurosci. 2005; 25: 5038-45
|
|
|
28) Wilkosc M, Hauser J, Tomaszewska M, et al. Influence of dopaminergic and serotoninergic genes on working memory in healthy subjects. Acta Neurobiol Exp (Wars). 2010; 70: 86-94
|
|
|
29) Stelzel C, Basten U, Montag C, et al. Fronto-striatal involvement in task switching depends on genetic differences in d2 receptor density. J Neurosci. 2010; 30: 14205-12
|
|
|
30) van Holstein M, Aarts E, van der Schaaf ME, et al. Human cognitive flexibility depends on dopamine D2 receptor signaling. Psychopharmacology (Berl). 2011 May 25
|
|
|
31) de Frias CM, Marklund P, Eriksson E, et al. Influence of COMT gene polymorphism on fMRI-assessed sustained and transient activity during a working memory task. J Cogn Neurosci. 2010; 22: 1614-22
|
|
|
32) Frank MJ, Doll BB, Oas-Terpstra J, et al. Pre-frontal and striatal dopaminergic genes predict individual differences in exploration and exploita-tion. Nat Neurosci. 2009; 12: 1062-8
|
|
|
33) DʼSouza UM, Craig IW. Functional genetic polymorphisms in serotonin and dopamine gene systems and their significance in behavioural disorders. Prog Brain Res. 2008; 172: 73-98
|
|
|
34) Kobayashi S, Kawagoe R, Takikawa Y, et al. Functional differences between macaque prefrontal cortex and caudate nucleus during eye movements with and without reward. Exp Brain Res. 2007; 176: 341-55
|
|
|
35) Diekhof EK, Gruber O. When desire collides with reason: functional interactions between anteroventral prefrontal cortex and nucleus accumbens underlie the human ability to resist impulsive desires. J Neurosci. 2010; 30: 1488-93
|
|
|
36) McClure SM, Laibson DI, Loewenstein G, et al. Separate neural systems value immediate and delayed monetary rewards. Science. 2004; 306: 503-7
|
|
|
37) Houk JC, Wise SP. Distributed modular archi-tectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and control-ling action. Cereb Cortex. 1995; 5: 95-110
|
|
|
38) Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990; 13: 266-71
|
|
|