1) Mace OJ, Affleck J, Patel N, et al. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol. 2007; 582: 379-92
|
|
|
2) Margolskee RF, Dyer J, Kokrashvili Z, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci U S A. 2007; 104: 15075-80
|
|
|
3) Jang HJ, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A. 2007; 104: 15069-74
|
|
|
4) San Gabriel AM, Maekawa T, Uneyama H, et al. mGluR1 in the fundic glands of rat stomach. FEBS Lett. 2007; 581: 1119-23
|
|
|
5) Tsurugizawa T, Uematsu H, Nakamura E, et al. Mechanisms of neural response to gastro-intestinal nutritive stimuli: the gut-brain axis. Gastroenterology. 2009; 137: 262-73
|
|
|
6) Nakagawa Y, Nagasawa M, Yamada S, et al. Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secre-tion. PloS One. 2009; 4: e5106
|
|
|
7) Ren X, Zhou L, Terwilliger R, et al. Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integ Neurosci. 2009; 3: 1-15
|
|
|
8) Shin YJ, Park JH, Choi JS, et al. Enhanced expression of the sweet taste receptors and alpha-gustducin in reactive astrocytes of the rat hippocampus following ischemic injury. Neurochem Res. 2010; 35: 1628-34
|
|
|
9) Okamoto M, Matsunami M, Dan H, et al. Prefrontal activity during taste encoding: an fNIRS study. Neuroimage. 2006; 31: 796-806
|
|
|
10) Okamoto M, Wada Y, Yamaguchi Y, et al. Process-specific prefrontal contributions to episodic encoding and retrieval of tastes: a functional fNIRS study. Neuroimage. 2011; 54: 1578-88
|
|
|
11) Accolla R, Bathellier B, Petersen CCH, et al. Differential spatial representation of taste modalities in the rat gustatory cortex. J Neurosci. 2007; 27: 1396-404
|
|
|
12) Carleton A, Accolla R, Simon SA. Coding in the mammalian gustatory system. Trends Neurosci. 2010; 33: 326-34
|
|
|
13) Accolla R, Carleton A. Internal body state influences topographical plasticity of sensory representations in the rat gustatory cortex. Proc Natl Acad Sci U S A. 2008; 105: 4010-5
|
|
|
14) Small DM. Taste representation in the human insula. Brain Struct Funct. 2010; 214: 551-61
|
|
|
15) Haase L, Cerf-Ducastel B, Murphy C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage. 2009; 44: 1008-21
|
|
|
16) Rudenga K, Green B, Nachtigal D, et al. Evidence for an integrated oral sensory module in the human anterior ventral insula. Chem Senses. 2010; 35: 693-703
|
|
|
17) Felsted JA, Ren X, Chouinard-Decorte F, et al. Genetically determined differences in brain response to a primary food reward. J Neurosci. 2010; 30: 2428-32
|
|
|
18) Mela DJ. Eating for pleasure or just wanting to eat? Reconsidering sensory hedonic responses as driver of obesity. Appetite. 2006; 47: 10-7
|
|
|
19) Berridge KC. ʻLikingʼ and ʻwantingʼ food rewards: brain substrates and roles in eating disorders. Physiol Behav. 2009; 97: 537-50
|
|
|
20) Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev. 1998; 28: 309-69
|
|
|
21) Kelley AE, Bakshi VP, Haber SN. Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav. 2002; 76: 365-77
|
|
|
22) Pecina S, Berridge KC. Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci. 2005; 25: 11777-86
|
|
|
23) Matias I, Di Marzo V. Endocannabinoids and the control of energy balance. Trends Endocrinol Metabol. 2007; 18: 27-37
|
|
|
24) Shinohara Y, Inui T, Yamamoto T, et al. Can-nabinoid in the nucleus accumbens enhances the intake of palatable solution. Neuroreport. 2009; 20: 1382-5
|
|
|
25) Mahler SV, Smith KS, Berridge KC. Endocan-nabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ʻlikinʼ of a sweet reward. Neuropsychopharmacol. 2007; 32: 2267-78
|
|
|
26) Yamamoto T. Brain regions responsible for the expression of conditioned taste aversion in rats. Chem Senses. 2007; 32: 105-9
|
|
|
27) Inui T, Yamamoto T, Shimura T. GABAergic transmission in the rat ventral pallidum mediates a saccharin palatability shift in coniditioned taste aversion. Eur J Neurosci. 2009; 30: 110-5
|
|
|
28) Ma L, Wang DD, Zhang TY, et al. Region-specific involvement of BDNF secretion and synthesis in conditioned taste aversion memory formation. J Neurosci. 2011; 31: 2079-90
|
|
|
29) Guzman-Ramos K, Osorio-Gomez D, Moreno-Castilla P, et al. Off-line concomitant release of dopamine and glutamate involvement in taste memory consolidation. J Neurochem. 2010; 114: 226-36
|
|
|