1) Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007; 449: 804-10
|
|
|
2) Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007; 104: 13780-5
|
|
|
3) Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system, Nat Rev Immunol. 2004; 4: 478-85
|
|
|
4) Bäckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005; 307: 1915-20
|
|
|
5) Rakoff-Nahoum S, Medzhitov R. Role of the innate immune system and host-commensal mutualism. Curr Top Microbiol Immunol. 2006; 308: 1-18
|
|
|
6) Ley RE, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes. Science. 2008; 320: 1647-51
|
|
|
7) Niess JH, Leithäuser F, Adler G, et al. Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. J Immunol. 2008; 180: 559-68
|
|
|
8) Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009; 9: 313-23
|
|
|
9) Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005; 122: 107-18
|
|
|
10) Strauch UG, Obermeier F, Grunwald N, et al. Influence of intestinal bacteria on induction of regulatory T cells: Lessons from a transfer model of colitis. Gut. 2005; 54: 1546-52
|
|
|
11) Neurath M, Fuss I, Strober W. TNBS-colitis. Int Rev Immunol. 2000; 19: 51-62
|
|
|
12) Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008; 453: 620-5
|
|
|
13) Maynard CL, Weaver CT. Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunol Rev. 2008; 226: 219-33
|
|
|
14) Rubtsov YP, Rasmussen JP, Chi EY, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008; 28: 546-58
|
|
|
15) Wang Q, McLoughlin RM, Cobb BA, et al. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. J Exp Med. 2006; 203: 2853-63
|
|
|
16) Round JL, Lee SM, Li J, et al. The Toll-like receptor2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011; 332: 974-7
|
|
|
17) Klaasen HL, Koopman JP, Van den Brink ME, et al. Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species. Lab Anim. 1993; 27: 141-50
|
|
|
18) Klaasen HL, Van der Heijden PJ, Stok W, et al. Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect Immun. 1993; 61: 303-6
|
|
|
19) Snel J, Heinen PP, Blok HJ, et al. Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of “Candidatus Arthromitus". Int J Syst Bacteriol. 1995; 45: 780-2
|
|
|
20) Talham GL, Jiang HQ, Bos NA, et al. Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun. 1999; 67: 1992-2000
|
|
|
21) Davis CP, Savage DC. Habitat, succession, attachment, and morphology of segmented, filamentous microbes indigenous to the murine gastrointestinal tract. Infect Immun. 1974; 10: 948-56
|
|
|
22) Koopman JP, Stadhouders AM, Kennis HM, et al. The attachment of filamentous segmented micro-organisms to the distal ileum wall of the mouse: a scanning and transmission electron microscopy study. Lab Anim. 1987; 21: 48-52
|
|
|
23) Umesaki Y, Setoyama H, Matsumoto S, et al. Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system Infect Immun. 1999; 67: 3504-11
|
|
|
24) Heczko U, Abe A, Finlay BB. Segmented filamentous bacteria prevent colonization of enteropathogenic Escherichia coli O103 in rabbits. J Infect Dis. 2000; 181: 1027-33
|
|
|
25) Suzuki K, Meek B, Doi Y, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A. 2004; 101: 1981-6
|
|
|
26) Leppkes M, Becker C, Ivanov II, et al. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology. 2009; 136: 257-67
|
|
|
27) Curtis MM, Way SS. Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology. 2009; 126: 177-85
|
|
|
28) Aujla SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Semin Immunol. 2007; 19: 377-82
|
|
|
29) Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007; 8: 345-50
|
|
|
30) Ivanov II, Frutos Rde L, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008; 4: 337-49
|
|
|
31) Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009; 139: 485-98
|
|
|
32) Monach PA, Mathis D, Benoist C. The K/BxN arthritis model. Curr Protoc Immunol. 2008; Chapter15: Unit 15.22. 1-12
|
|
|
33) Wu HJ, Ivanov II, Darce J, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010; 32: 815-27
|
|
|
34) Furlaneto CJ, Campa A. A novel function of serum amyloid A: a potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophil. Biochem Biophys Res Commun. 2000; 268: 405-8
|
|
|
35) He R, Shepard LW, Chen J, et al. Serum amyloid A is an endogenous ligand that differentially induces IL-12 and IL-23. J Immunol. 2006; 177: 4072-9
|
|
|
36) Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003; 4: 330-6
|
|
|
37) Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299: 1057-61
|
|
|
38) Barnes MJ, Powrie F. Regulatory T cells reinforce intestinal homeostasis. Immunity. 2009; 31: 401-11
|
|
|
39) Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003; 4: 337-42
|
|
|
40) Gavin M, Rudensky A. Control of immune homeostasis by naturally arising regulatory CD4+ T cells. Curr Opin Immunol. 2003; 15: 690-6
|
|
|
41) Hall JA, Bouladoux N, Sun CM, et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity. 2008; 29: 637-49
|
|
|
42) Lyons A, O'Mahony D, O'Brien F, et al. Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin Exp Allergy. 2010; 40: 811-9
|
|
|
43) Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010; 107: 12204-9
|
|
|
44) Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011; 331: 337-41
|
|
|
45) Itoh K, Mitsuoka T. Characterization of clostridia isolated from faeces of limited flora mice and their effect on caecal size when associated with germ-free mice. Lab Anim. 1985; 19: 111-8
|
|
|
46) Momose Y, Maruyama A, Iwasaki T, et al. 16S rRNA gene sequence-based analysis of clostridia related to conversion of germfree mice to the normal state. J Appl Microbiol. 2009; 107: 2088-97
|
|
|