1) Kantoff PW, Higano CS, Shore ND, et al. IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010; 363: 411-22
|
|
|
2) Spano JP, Costagliola D, Katlama C, et al. AIDS-related malignancies: state of the art and therapeutic challenges. J Clin Oncol. 2008; 26: 4834-42
|
|
|
3) Adami J, Gäbel H, Lindelöf B, et al. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br J Cancer. 2003; 89: 1221-7
|
|
|
4) Vesely MD, Kershaw MH, Schreiber RD, et al. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011; 29: 235-71
|
|
|
5) Skov S, Pedersen MT, Andresen L, et al. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res. 2005; 65: 11136-45
|
|
|
6) Kakimi K, Nakajima J, Wada H. Active specific immunotherapy and cell-transfer therapy for the treatment of non-small cell lung cancer. Lung Cancer. 2009; 65: 1-8
|
|
|
7) van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991; 254: 1643-7
|
|
|
8) Boon T, Old LJ. Cancer tumor antigens. Curr Opin Immunol. 1997; 9: 681-3
|
|
|
9) Caballero OL, Chen YT. Cancer/testis (CT) antigens, patential targets for immunotherapy. Cancer Sci 2009; 100: 2014-21
|
|
|
10) Traversari C, van der Bruggen P, Van den Eynde B, et al. Transfection and expression of a gene coding for a human melanoma antigen recognized by autologous cytolytic T lymphocytes. Immunogenetics. 1992; 35: 145–52
|
|
|
11) Sahin U, Türeci O, Pfreundschuh M. Serological identification of human tumor antigens. Curr Opin Immunol. 1997; 9: 709-16
|
|
|
12) Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002; 3: 991-8
|
|
|
13) Gure AO, Chua R, Williamson B, et al. Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. Clin Cancer Res. 2005; 11: 8055-62
|
|
|
14) Van den Eynde BJ, van der Bruggen P. T cell defined tumor antigens. Curr Opin Immunol. 1997; 9: 684-93
|
|
|
15) Atanackovic D, Altorki NK, Stockert E, et al. Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. J Immunol. 2004; 172: 3289-96
|
|
|
16) Vansteenkiste J, Zielinski M. Dahabre J, et al. Multi-center, double-blind, randomized, placebo-controlled phase II study to assess the efficacy of recombinant MAGE-A3 vaccine as adjuvant therapy in stage IB/II MADE-A3-positive, completely resected, non-small cell lung cancer (NSCLC). J Clin Oncol. 2006; 24: 368s
|
|
|
17) Vansteenkiste J, Zielinski M, Linder A, et al. Activity of MAGE-A3 cancer immunotherapeutic as adjuvant therapy in stage IB/II non-small cell lung cancer (NSCLC): final results of a multi-center, double-blind, randomized, placebo-controlled Phase II study. J Thorac Oncol. 2007; 2: S334-5
|
|
|
18) Atanackovic D, Altorki NK, Cao Y, et al. Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc Natl Acad Sci U S A. 2008; 105: 1650-5
|
|
|
19) Beebe M, Qin M, Moi M, et al. Formulation and characterization of a ten-peptide single-vial vaccine, EP-2101, designed to induce cytotoxic T-lymphocyte responses for cancer immunotherapy. Hum Vaccin. 2008; 4: 210-8
|
|
|
20) Barve M, Bender J, Senzer N, et al. Induction of immune responses and clinical efficacy in a phase II trial of IDM-2101, a 10-epitope cytotoxic T-lymphocyte vaccine, in metastatic non-small-cell lung cancer. J Clin Oncol. 2008; 26: 4418-25
|
|
|
21) Bruggen Pvd, Stroobant V, Pel AV, et al. T-cell defined tumor antigens. In Cancer Immunity. 2001 http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm
|
|
|
22) Thompson JA, Grunert F, Zimmermann W. Carcinoembryonic antigen gene family—molecular-biology and clinical perspectives. J Clin Lab Anal. 1991; 5: 344-66
|
|
|
23) Ueda Y, Itoh T, Nukaya I, et al. Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived HLA-A24-restricted CTL epitope: clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas. Int J Oncol. 2004; 24: 909-17
|
|
|
24) Morse MA, Clay TM, Hobeika AC, et al. Phase I study of immunization with dendritic cells modified with fowlpox encoding carcinoembryonic antigen and costimulatory molecules. Clin Cancer Res. 2005; 11: 3017-24
|
|
|
25) Morse MA, Hobeika AC, Osada T, et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood. 2008; 112: 610-8
|
|
|
26) Marshall JL, Gulley JL, Arlen PM, et al. Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol. 2005; 23: 720-31
|
|
|
27) Kaufman HL, Lenz HJ, Marshall J, et al. Combination chemotherapy and ALVAC-CEA/B7. 1 vaccine in patients with metastatic colorectal cancer. Clin Cancer Res. 2008; 14: 4843-9
|
|
|
28) Ho SB, Niehans GA, Lyftogt C, et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res. 1993; 53: 641-51
|
|
|
29) Kontani K, Taguchi O, Ozaki Y, et al. Dendritic cell vaccine immunotherapy of cancer targeting MUC1 mucin. Int J Mol Med. 2003; 12: 493-502
|
|
|
30) Rochlitz C, Figlin R, Squiban P, et al. Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer. J Gene Med. 2003; 5: 690-9
|
|
|
31) Palmer M, Parker J, Modi S, et al. Phase I study of the BLP25 (MUC1 peptide) liposomal vaccine for active specific immunotherapy in stage IIIB/IV non-small-cell lung cancer. Clin Lung Cancer. 2001; 3: 49-57
|
|
|
32) Butts C, Murray N, Maksymiuk A, et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol. 2005; 23: 6674-81
|
|
|
33) Sangha R, Butts C. L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin Cancer Res. 2007; 13(15 Pt 2): s4652-4
|
|
|
34) Marchetti A, Bertacca G, Buttitta F, et al. Telomerase activity as a prognostic indicator in stage I non-small cell lung cancer. Clin Cancer Res. 1999; 5: 2077-81
|
|
|
35) Brunsvig PF, Aamdal S, Gjertsen MK, et al. Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother. 2006; 55: 1553-64
|
|
|
36) Bolonaki I, Kotsakis A, Papadimitraki E, et al. Vaccination of patients with advanced non-small-cell lung cancer with an optimized cryptic human telomerase reverse transcriptase peptide. J Clin Oncol. 2007; 25: 2727-34
|
|
|
37) García B, Neninger E, de la Torre A, et al. Effective inhibition of the epidermal growth factor/epidermal growth factor receptor binding by anti-epidermal growth factor antibodies is related to better survival in advanced non-small-cell lung cancer patients treated with the epidermal growth factor cancer vaccine. Clin Cancer Res. 2008; 14: 840-6
|
|
|
38) Antonia SJ, Mirza N, Fricke I, et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res. 2006; 12(3 Pt 1): 878-87
|
|
|
39) Adjei AA. K-ras as a target for lung cancer therapy. J Thorac Oncol. 2008; 3(6 Suppl 2): S160-3
|
|
|
40) Suda T, Tsunoda T, Daigo Y, et al. Identification of human leukocyte antigen-A24-restricted epitope peptides derived from gene products upregulated in lung and esophageal cancers as novel targets for immunotherapy. Cancer Sci. 2007; 98: 1803-8
|
|
|
41) Michael A, Ball G, Quatan N, et al. Delayed disease progression after allogeneic cell vaccination in hormone-resistant prostate cancer and correlation with immunologic variables. Clin Cancer Res. 2005; 11: 4469-78
|
|
|
42) Morton DL, Mozzillo N, Thompson JF, et al. An international, randomized, phase III trial of bacillus Calmette-Guerin (BCG) plus allogeneic melanoma vaccine (MCV) or placebo after complete resection of melanoma metastatic to regional or distant sites. J Clin Oncol. 2007; 25(18S) [abstract 8508]
|
|
|
43) Salgia R, Lynch T, Skarin A, et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol. 2003; 21: 624-30
|
|
|
44) Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993; 90: 3539-43
|
|
|
45) Nemunaitis J, Sterman D, Jablons D, et al. Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Natl Cancer Inst. 2004; 96: 326–31
|
|
|
46) Nemunaitis J, Dillman RO, Schwarzenberger PO, et al. Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol. 2006; 24: 4721-30
|
|
|
47) Uenaka A, Wada H, Isobe M, et al. T cell immunomonitoring and tumor responses in patients immunized with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein. Cancer Immunity. 2007; 19: 7-9
|
|
|
48) Bijker MS, van den Eeden SJ, Franken KL, et al. CD8+ CTL priming by exact peptide epitopes in incomplete Freund's adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol. 2007; 179: 5033–40
|
|
|
49) Melief CJ, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer. 2008; 8: 351-60
|
|
|
50) Melief CJ, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer. 2008; 8: 351-60
|
|
|
51) 和田 尚, 垣見和宏, 中山睿一. NY-ESO-1長鎖ペプチドワクチン. 細胞. 2011; 43: 96-9
|
|
|
52) Kreiter S, Diken M, Selmi A, et al. Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol. 2011; 23: 399-406
|
|
|
53) Morse MA, Nair SK, Mosca PJ, et al. Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Invest. 2003, 21: 341-9
|
|
|
54) Van Tendeloo VF, Van de Velde A, Van Driessche A, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms' tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A. 2010; 107: 13824-9
|
|
|
55) Rittig SM, Haentschel M, Weimer KJ, et al. Intradermal vaccinations with RNA coding for TAA generate CD8(+) and CD4(+) immune responses and induce clinical benefit in vaccinated patients. Mol Ther. 2011; 19: 990-9
|
|
|
56) Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000; 92: 205-16
|
|
|
57) Wolchok JD, Hoos A, O'Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009; 15: 7412-20
|
|
|
58) Ribas A, Chmielowski B, Glaspy JA. Do we need a different set of response assessment criteria for tumor immunotherapy? Clin Cancer Res. 2009; 15: 7116-8
|
|
|
59) Gnjatic S, Nishikawa H, Jungbluth AA, et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res. 2006; 95: 1-30
|
|
|
60) Jäger E, Karbach J, Gnjatic S, et al. Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc Natl Acad Sci U S A. 2006; 103: 14453-8
|
|
|
61) Windon RG, Chaplin PJ, McWaters P, et al. Local immune responses to influenza antigen are synergistically enhanced by the adjuvant ISCOMATRIX. Vaccine. 2001; 20: 490-7
|
|
|
62) Kawabata R, Wada H, Isobe M, et al. Antibody response against NY-ESO-1 in CHP-NY-ESO-1 vaccinated patients. Int J Cancer. 2007; 120: 2178–84
|
|
|
63) Kakimi K, Isobe M, Uenaka A, et al. A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. Int J Cancer. 2011 [Epub ahead of print]
|
|
|
64) Trotti A, Colevas AD, Setser A, et al. CTCAE v3. 0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003; 13: 176–81
|
|
|
65) Igney FH, Krammer PH. Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol. 2002; 71: 907–20
|
|
|
66) Whiteside TL. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 2006; 16: 3–15
|
|
|
67) Brasoveanu LI, Fonsatti E, Visintin A, et al. Melanoma cells constitutively release an anchor-positive soluble form of protectin (sCD59) that retains functional activities in homologous complement-mediated cytotoxicity. J Clin Invest. 1997; 100: 1248-55
|
|
|
68) Huang M, Wang J, Lee P, et al. Human non-small cell lung cancer cells express a type 2 cytokine pattern. Cancer Res. 1995; 55: 3847-53
|
|
|
69) Occleston NL, Walker C. Production of multiple growth factors by a human non-small cell lung carcinoma cell line. Cancer Lett. 1993; 71: 203-10
|
|
|
70) Fischer JR, Darjes H, Lahm H, et al. Constitutive secretion of bioactive transforming growth factor beta 1 by small cell lung cancer cell lines. Eur J Cancer. 1994; 30: 2125-9
|
|
|
71) Sharma S, Yang SC, Zhu L, et al. Tumor cyclo-oxygenase-2/prostaglandin E2-dependent pro-motion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res. 2005; 65: 5211-20
|
|
|
72) Aikawa H, Takahashi H, Fujimura S, et al. Immunohistochemical study on tumor angiogenic factors in non-small cell lung cancer. Anticancer Res. 1999; 19: 4305-9
|
|
|
73) Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363: 711-23
|
|
|