1) Shimoda LA, Semenza GL. HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med. 2011; 183: 152-6
|
|
|
2) Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010; 40: 294-309
|
|
|
3) Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008; 8: 967-75
|
|
|
4) Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3: 721-32
|
|
|
5) Klimova T, Chandel NS. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 2008; 15: 660-6
|
|
|
6) Volm M, Koomagi R. Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res. 2000; 20: 1527-33
|
|
|
7) Kaelin WG, Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 2008; 8: 865-73
|
|
|
8) Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: Sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007; 12: 108-13
|
|
|
9) Koshiji M, Kageyama Y, Pete EA, et al. HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J. 2004; 23: 1949-56
|
|
|
10) Gordan JD, Bertout JA, Hu CJ, et al. HIF-2α promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell. 2007; 11: 335-47
|
|
|
11) Moeller BJ, Dreher MR, Rabbani ZN, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 2005; 8: 99-110
|
|
|
12) Bertout JA, Majmundar AJ, Gordan JD, et al. HIF2α inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proc Natl Acad Sci U S A. 2009; 106: 14391-6
|
|
|
13) Roberts AM, Watson IR, Evans AJ, et al. Suppression of hypoxia-inducible factor 2α restores p53 activity via Hdm2 and reverses chemoresistance of renal carcinoma cells. Cancer Res. 2009; 69: 9056-64
|
|
|
14) Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011; 364: 656-65
|
|
|
15) Naugler WE, Karin M. NF-κB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev. 2008; 18: 19-26
|
|
|
16) Min C, Eddy SF, Sherr DH, et al. NF-κB and epithelial to mesenchymal transition of cancer. J Cell Biochem. 2008; 104: 733-44
|
|
|
17) Gupta GP, Massague J. Cancer metastasis: Building a framework. Cell. 2006; 127: 679-95
|
|
|
18) Lu X, Kang Y. Hypoxia and hypoxia-inducible factors: Master regulators of metastasis. Clin Cancer Res. 2010; 16: 5928-35
|
|
|
19) Yang MH, Wu MZ, Chiou SH, et al. Direct regulation of TWIST by HIF-1α promotes metastasis. Nat Cell Biol. 2008; 10: 295-305
|
|
|
20) Mak P, Leav I, Pursell B, et al. ERβ impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated Snail nuclear localization: Implications for gleason grading. Cancer Cell. 2010; 17: 319-32
|
|
|
21) Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res. 2003; 63: 1138-43
|
|
|
22) Erler JT, Bennewith KL, Nicolau M, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006; 440: 1222-6
|
|
|
23) Shyu KG, Hsu FL, Wang MJ, et al. Hypoxia-inducible factor 1α regulates lung adenocarcinoma cell invasion. Exp Cell Res. 2007; 313: 1181-91
|
|
|
24) Sullivan R, Graham CH. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev. 2007; 26: 319-31
|
|
|
25) Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001; 410: 50-6
|
|
|
26) Liu YL, Yu JM, Song XR, et al. Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines. Cancer Biol Ther. 2006; 5: 1320-6
|
|
|
27) Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005; 438: 820-7
|
|
|
28) Erler JT, Bennewith KL, Cox TR, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009; 15: 35-44
|
|
|
29) Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007; 129: 465-72
|
|
|
30) Li Z, Bao S, Wu Q, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009; 15: 501-13
|
|
|
31) Le QT, Chen E, Salim A, et al. An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res. 2006; 12: 1507-14
|
|
|
32) Ioannou M, Papamichali R, Kouvaras E, et al. Hypoxia inducible factor-1α and vascular endothelial growth factor in biopsies of small cell lung carcinoma. Lung. 2009; 187: 321-9
|
|
|
33) Giatromanolaki A, Koukourakis MI, Sivridis E, et al. Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer. 2001; 85: 881-90
|
|
|
34) Hung JJ, Yang MH, Hsu HS, et al. Prognostic significance of hypoxia-inducible factor-1α, TWIST1 and Snail expression in resectable non-small cell lung cancer. Thorax. 2009; 64: 1082-9
|
|
|
35) Kim SJ, Rabbani ZN, Dewhirst MW, et al. Expression of HIF-1α, CA IX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer. Lung Cancer. 2005; 49: 325-35
|
|
|
36) Kim WY, Perera S, Zhou B, et al. HIF2α cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest. 2009; 119: 2160-70
|
|
|
37) Franovic A, Holterman CE, Payette J, et al. Human cancers converge at the HIF-2α oncogenic axis. Proc Natl Acad Sci U S A. 2009; 106: 21306-11
|
|
|
38) Jacoby JJ, Erez B, Korshunova MV, et al. Treatment with HIF-1α antagonist PX-478 inhibits progression and spread of orthotopic human small cell lung cancer and lung adenocarcinoma in mice. J Thorac Oncol. 2010; 5: 940-9
|
|
|
39) Mazumdar J, Hickey MM, Pant DK, et al. HIF-2α deletion promotes Kras-driven lung tumor development. Proc Natl Acad Sci U S A. 2010; 107: 14182-7
|
|
|
40) Ebos JM, Lee CR, Cruz-Munoz W, et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009; 15: 232-9
|
|
|
41) Paez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009; 15: 220-31
|
|
|
42) Zhang H, Qian DZ, Tan YS, et al. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc Natl Acad Sci U S A. 2008; 105: 19579-86
|
|
|
43) Lee K, Qian DZ, Rey S, et al. Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci U S A. 2009; 106: 2353-8
|
|
|
44) Zimmer M, Ebert BL, Neil C, et al. Small-molecule inhibitors of HIF-2α translation link its 5'UTR iron-responsive element to oxygen sensing. Mol Cell. 2008; 32: 838-48
|
|
|
45) Greenberger LM, Horak ID, Filpula D, et al. A RNA antagonist of hypoxia-inducible factor-1α, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther. 2008; 7: 3598-608
|
|
|
46) Jain RK. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 2005; 307: 58-62
|
|
|
47) Mazzone M, Dettori D, Leite de Oliveira R, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell. 2009; 136: 839-51
|
|
|