医中誌リンクサービス


文献リスト

1) Dulbecco R. A turning point in cancer research: sequencing the human genome. Science. 1986; 231: 1055-6
PubMed
医中誌リンクサービス
2) Rowley JD. Chromosome translocations: dangerous liaisons revisited. Nature reviews Cancer. 2001; 1: 245-50
CrossRef
医中誌リンクサービス
3) Maciejewski JP, Mufti GJ. Whole genome scanning as a cytogenetic tool in hematologic malignancies. Blood. 2008; 112: 965-74
PubMed CrossRef
医中誌リンクサービス
4) Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009; 360: 2289-301
PubMed CrossRef
医中誌リンクサービス
5) Nikoloski G, Langemeijer SM, Kuiper RP, et al. Somatic mutations of the histone methyl-transferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010; 42: 665-7
PubMed CrossRef
医中誌リンクサービス
6) Langemeijer SM, Kuiper RP, Berends M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009; 41: 838-42
PubMed CrossRef
医中誌リンクサービス
7) Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010; 42: 722-6
PubMed CrossRef
医中誌リンクサービス
8) Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010; 11: 31-46
PubMed CrossRef
医中誌リンクサービス
9) Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008; 456: 66-72
PubMed
医中誌リンクサービス
10) Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009; 361: 1058-66
CrossRef
医中誌リンクサービス
11) Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010; 363: 2424-33
PubMed CrossRef
医中誌リンクサービス
12) Yan XJ, Xu J, Gu ZH, et al. Exome sequencing identifies somatic mutations of DNA methyl-transferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011; 43: 309-15
PubMed CrossRef
医中誌リンクサービス
13) Parsons DW, Jones S, Zhang X, et al. An inte-grated genomic analysis of human glioblastoma multiforme. Science. 2008; 321: 1807-12
PubMed
医中誌リンクサービス
14) Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009; 360: 765-73
CrossRef
医中誌リンクサービス
15) Corpas FJ, Barroso JB, Sandalio LM, et al. Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol. 1999; 121: 921-8
PubMed CrossRef
医中誌リンクサービス
16) Chou WC, Huang HH, Hou HA, et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood. 2010; 116: 4086-94
PubMed CrossRef
医中誌リンクサービス
17) Wagner K, Damm F, Gohring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol. 2010; 28: 2356-64
PubMed CrossRef
医中誌リンクサービス
18) Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010; 28: 2348-55
PubMed CrossRef
医中誌リンクサービス
19) Martinez-Aviles L, Besses C, Alvarez-Larran A, et al. TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms. Ann Hematol. 2011; in press
医中誌リンクサービス
20) Gross S, Cairns RA, Minden MD, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med. 2010; 207: 339-44
PubMed CrossRef
医中誌リンクサービス
21) Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity convert-ing alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010; 17: 225-34
PubMed CrossRef
医中誌リンクサービス
22) Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010; 28: 3636-43
PubMed CrossRef
医中誌リンクサービス
23) Ho PA, Alonzo TA, Kopecky KJ, et al. Molecular alterations of the IDH1 gene in AML: a Childrenʼs Oncology Group and Southwest Oncology Group study. Leukemia. 2010; 24: 909-13
PubMed CrossRef
医中誌リンクサービス
24) Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med. 2010; 16: 387-97
PubMed CrossRef
医中誌リンクサービス
25) Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxy-glutarate. Nature. 2009; 462: 739-44
PubMed
医中誌リンクサービス
26) Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009; 324: 261-5
医中誌リンクサービス
27) Ono R, Taki T, Taketani T, et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10; 11)(q22; q23). Cancer Res. 2002; 62: 4075-80
PubMed
医中誌リンクサービス
28) Lorsbach RB, Moore J, Mathew S, et al. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10; 11)(q22; q23). Leukemia. 2003; 17: 637-41
PubMed CrossRef
医中誌リンクサービス
29) Abdel-Wahab O, Mullally A, Hedvat C, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009; 114: 144-7
PubMed CrossRef
医中誌リンクサービス
30) Chou WC, Chou SC, Liu CY, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011; 18: 3803-10
医中誌リンクサービス
31) Jankowska AM, Szpurka H, Tiu RV, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myelo-proliferative neoplasms. Blood. 2009; 113: 6403-10
PubMed CrossRef
医中誌リンクサービス
32) Kosmider O, Delabesse E, de Mas VM, et al. TET2 mutations in secondary acute myeloid leukemias: a French retrospective study. Haematologica. 2011; 96: 1059-63
PubMed CrossRef
医中誌リンクサービス
33) Kosmider O, Gelsi-Boyer V, Cheok M, et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009; 114: 3285-91
PubMed CrossRef
医中誌リンクサービス
34) Metzeler KH, Maharry K, Radmacher MD, et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2011; 29: 1373-81
PubMed CrossRef
医中誌リンクサービス
35) Mohamedali AM, Smith AE, Gaken J, et al. Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome. J Clin Oncol. 2009; 27: 4002-6
PubMed CrossRef
医中誌リンクサービス
36) Roche-Lestienne C, Marceau A, Labis E, et al. Mutation analysis of TET2, IDH1, IDH2 and ASXL1 in chronic myeloid leukemia. Leukemia. 2011; 25: 1661-4
PubMed CrossRef
医中誌リンクサービス
37) Smith AE, Mohamedali AM, Kulasekararaj A, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010; 116: 3923-32
PubMed CrossRef
医中誌リンクサービス
38) Tefferi A, Lim KH, Abdel-Wahab O, et al. Detection of mutant TET2 in myeloid malig-nancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia. 2009; 23: 1343-5
PubMed CrossRef
医中誌リンクサービス
39) Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324: 930-5
PubMed
医中誌リンクサービス
40) Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites. J Biol Chem. 2011; in press
医中誌リンクサービス
41) Cortellino S, Xu J, Sannai M, et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell. 2011; 146: 67-79
PubMed CrossRef
医中誌リンクサービス
42) He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011; in press
医中誌リンクサービス
43) Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011; in press
医中誌リンクサービス
44) Ficz G, Branco MR, Seisenberger S, et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011; 473: 398-402
PubMed
医中誌リンクサービス
45) Ito S, DʼAlessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010; 466: 1129-33
PubMed
医中誌リンクサービス
46) Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010; 468: 839-43
PubMed
医中誌リンクサービス
47) Pastor WA, Pape UJ, Huang Y, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011; 473: 394-7
PubMed
医中誌リンクサービス
48) Williams K, Christensen J, Pedersen MT, et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature. 2011; 473: 343-8
PubMed
医中誌リンクサービス
49) Wu H, DʼAlessio AC, Ito S, et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature. 2011; 473: 389-93
PubMed
医中誌リンクサービス
50) Gu TP, Guo F, Yang H, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011; 477: 606-10
PubMed
医中誌リンクサービス
51) Moran-Crusio K, Reavie L, Shih A, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011; 20: 11-24
PubMed CrossRef
医中誌リンクサービス
52) Quivoron C, Couronne L, Della Valle V, et al. TET2 inactivation results in pleiotropic hemato-poietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011; 20: 25-38
PubMed CrossRef
医中誌リンクサービス
53) Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011; 19: 17-30
PubMed CrossRef
医中誌リンクサービス
54) Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differ-entiation. Cancer Cell. 2010; 18: 553-67
PubMed CrossRef
医中誌リンクサービス
55) Yamashita Y, Yuan J, Suetake I, et al. Array-based genomic resequencing of human leukemia. Oncogene. 2010; 29: 3723-31
PubMed CrossRef
医中誌リンクサービス
56) Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003; 3(4) : 253-66
PubMed
医中誌リンクサービス
57) Walter MJ, Ding L, Shen D, et al. Recurrent DNMT3A mutations in patients with myelo-dysplastic syndromes. Leukemia. 2011; 25: 1153-8
PubMed CrossRef
医中誌リンクサービス
58) Jankowska AM, Makishima H, Tiu RV, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2 and DNMT3A. Blood. 2011; 118: 3932-41
PubMed CrossRef
医中誌リンクサービス
59) Ehrlich M. The ICF syndrome, a DNA methyl-transferase 3B deficiency and immunodeficiency disease. Clin Immunol. 2003; 109: 17-28
PubMed CrossRef
医中誌リンクサービス
60) Fisher CL, Berger J, Randazzo F, et al. A human homolog of additional sex combs, ADDITIONAL SEX COMBS-LIKE 1, maps to chromosome 20q11. Gene. 2003; 306: 115-26
PubMed CrossRef
医中誌リンクサービス
61) Fisher CL, Lee I, Bloyer S, et al. Additional sex combs-like 1 belongs to the enhancer of trithorax and polycomb group and genetically interacts with Cbx2 in mice. Dev Biol. 2010; 337: 9-15
PubMed CrossRef
医中誌リンクサービス
62) Scheuermann JC, de Ayala Alonso AG, Oktaba K, et al. Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature. 2010; 465: 243-7
PubMed
医中誌リンクサービス
63) Lee SW, Cho YS, Na JM, et al. ASXL1 represses retinoic acid receptor-mediated transcription through associating with HP1 and LSD1. J Biol Chem. 2010; 285: 18-29
PubMed CrossRef
医中誌リンクサービス
64) Wang J, Hevi S, Kurash JK, et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet. 2009; 41: 125-9
PubMed CrossRef
医中誌リンクサービス
65) Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009; 145: 788-800
PubMed CrossRef
医中誌リンクサービス
66) Abdel-Wahab O, Pardanani A, Patel J, et al. Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelo-monocytic leukemia and blast-phase myelo-proliferative neoplasms. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, UK. 2011; 25: 1200-2
PubMed CrossRef
医中誌リンクサービス
67) Boultwood J, Perry J, Pellagatti A, et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia. 2010; 24: 1062-5
PubMed CrossRef
医中誌リンクサービス
68) Carbuccia N, Murati A, Trouplin V, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009; 23: 2183-6
PubMed CrossRef
医中誌リンクサービス
69) Carbuccia N, Trouplin V, Gelsi-Boyer V, et al. Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia. 2010; 24: 469-73
PubMed CrossRef
医中誌リンクサービス
70) Gelsi-Boyer V, Trouplin V, Roquain J, et al. ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol. 2010; 151: 365-75
PubMed CrossRef
医中誌リンクサービス
71) Ricci C, Spinelli O, Salmoiraghi S, et al. ASXL1 mutations in primary and secondary myelo-fibrosis. Br J Haematol. 2011; in press
医中誌リンクサービス
72) Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010; 24: 1128-38
PubMed CrossRef
医中誌リンクサービス
73) Thol F, Friesen I, Damm F, et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011; 29: 2499-506
PubMed CrossRef
医中誌リンクサービス
74) Abdel-Wahab O, Kilpivaara O, Patel J, et al. The most commonly reported variant in ASXL1 (c. 1934dupG; p. Gly646TrpfsX12) is not a somatic alteration. Leukemia. 2010; 24: 1656-7
PubMed CrossRef
医中誌リンクサービス
75) Fisher CL, Pineault N, Brookes C, et al. Loss-of-function additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood. 2010; 115: 38-46
PubMed CrossRef
医中誌リンクサービス
76) Hoischen A, van Bon BW, Rodriguez-Santiago B, et al. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet. 2011; 43: 729-31
PubMed CrossRef
医中誌リンクサービス
77) Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011; 476(7360): 298-303
PubMed
医中誌リンクサービス
78) Pasqualucci L, Dominguez-Sola D, Chiarenza A, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011; 471(7337): 189-95
PubMed
医中誌リンクサービス
79) Pasqualucci L, Trifonov V, Fabbri G, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011; 43: 830-7
PubMed CrossRef
医中誌リンクサービス
80) Varela I, Tarpey P, Raine K, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011; 469: 539-42
PubMed
医中誌リンクサービス
81) Dalgliesh GL, Furge K, Greenman C, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010; 463: 360-3
PubMed
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp