1) Dulbecco R. A turning point in cancer research: sequencing the human genome. Science. 1986; 231: 1055-6
|
|
|
2) Rowley JD. Chromosome translocations: dangerous liaisons revisited. Nature reviews Cancer. 2001; 1: 245-50
|
|
|
3) Maciejewski JP, Mufti GJ. Whole genome scanning as a cytogenetic tool in hematologic malignancies. Blood. 2008; 112: 965-74
|
|
|
4) Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009; 360: 2289-301
|
|
|
5) Nikoloski G, Langemeijer SM, Kuiper RP, et al. Somatic mutations of the histone methyl-transferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010; 42: 665-7
|
|
|
6) Langemeijer SM, Kuiper RP, Berends M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009; 41: 838-42
|
|
|
7) Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010; 42: 722-6
|
|
|
8) Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010; 11: 31-46
|
|
|
9) Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008; 456: 66-72
|
|
|
10) Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009; 361: 1058-66
|
|
|
11) Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010; 363: 2424-33
|
|
|
12) Yan XJ, Xu J, Gu ZH, et al. Exome sequencing identifies somatic mutations of DNA methyl-transferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011; 43: 309-15
|
|
|
13) Parsons DW, Jones S, Zhang X, et al. An inte-grated genomic analysis of human glioblastoma multiforme. Science. 2008; 321: 1807-12
|
|
|
14) Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009; 360: 765-73
|
|
|
15) Corpas FJ, Barroso JB, Sandalio LM, et al. Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol. 1999; 121: 921-8
|
|
|
16) Chou WC, Huang HH, Hou HA, et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood. 2010; 116: 4086-94
|
|
|
17) Wagner K, Damm F, Gohring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol. 2010; 28: 2356-64
|
|
|
18) Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010; 28: 2348-55
|
|
|
19) Martinez-Aviles L, Besses C, Alvarez-Larran A, et al. TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms. Ann Hematol. 2011; in press
|
|
|
20) Gross S, Cairns RA, Minden MD, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med. 2010; 207: 339-44
|
|
|
21) Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity convert-ing alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010; 17: 225-34
|
|
|
22) Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010; 28: 3636-43
|
|
|
23) Ho PA, Alonzo TA, Kopecky KJ, et al. Molecular alterations of the IDH1 gene in AML: a Childrenʼs Oncology Group and Southwest Oncology Group study. Leukemia. 2010; 24: 909-13
|
|
|
24) Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med. 2010; 16: 387-97
|
|
|
25) Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxy-glutarate. Nature. 2009; 462: 739-44
|
|
|
26) Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009; 324: 261-5
|
|
|
27) Ono R, Taki T, Taketani T, et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10; 11)(q22; q23). Cancer Res. 2002; 62: 4075-80
|
|
|
28) Lorsbach RB, Moore J, Mathew S, et al. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10; 11)(q22; q23). Leukemia. 2003; 17: 637-41
|
|
|
29) Abdel-Wahab O, Mullally A, Hedvat C, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009; 114: 144-7
|
|
|
30) Chou WC, Chou SC, Liu CY, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011; 18: 3803-10
|
|
|
31) Jankowska AM, Szpurka H, Tiu RV, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myelo-proliferative neoplasms. Blood. 2009; 113: 6403-10
|
|
|
32) Kosmider O, Delabesse E, de Mas VM, et al. TET2 mutations in secondary acute myeloid leukemias: a French retrospective study. Haematologica. 2011; 96: 1059-63
|
|
|
33) Kosmider O, Gelsi-Boyer V, Cheok M, et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009; 114: 3285-91
|
|
|
34) Metzeler KH, Maharry K, Radmacher MD, et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2011; 29: 1373-81
|
|
|
35) Mohamedali AM, Smith AE, Gaken J, et al. Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome. J Clin Oncol. 2009; 27: 4002-6
|
|
|
36) Roche-Lestienne C, Marceau A, Labis E, et al. Mutation analysis of TET2, IDH1, IDH2 and ASXL1 in chronic myeloid leukemia. Leukemia. 2011; 25: 1661-4
|
|
|
37) Smith AE, Mohamedali AM, Kulasekararaj A, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010; 116: 3923-32
|
|
|
38) Tefferi A, Lim KH, Abdel-Wahab O, et al. Detection of mutant TET2 in myeloid malig-nancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia. 2009; 23: 1343-5
|
|
|
39) Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324: 930-5
|
|
|
40) Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites. J Biol Chem. 2011; in press
|
|
|
41) Cortellino S, Xu J, Sannai M, et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell. 2011; 146: 67-79
|
|
|
42) He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011; in press
|
|
|
43) Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011; in press
|
|
|
44) Ficz G, Branco MR, Seisenberger S, et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011; 473: 398-402
|
|
|
45) Ito S, DʼAlessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010; 466: 1129-33
|
|
|
46) Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010; 468: 839-43
|
|
|
47) Pastor WA, Pape UJ, Huang Y, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011; 473: 394-7
|
|
|
48) Williams K, Christensen J, Pedersen MT, et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature. 2011; 473: 343-8
|
|
|
49) Wu H, DʼAlessio AC, Ito S, et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature. 2011; 473: 389-93
|
|
|
50) Gu TP, Guo F, Yang H, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011; 477: 606-10
|
|
|
51) Moran-Crusio K, Reavie L, Shih A, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011; 20: 11-24
|
|
|
52) Quivoron C, Couronne L, Della Valle V, et al. TET2 inactivation results in pleiotropic hemato-poietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011; 20: 25-38
|
|
|
53) Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011; 19: 17-30
|
|
|
54) Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differ-entiation. Cancer Cell. 2010; 18: 553-67
|
|
|
55) Yamashita Y, Yuan J, Suetake I, et al. Array-based genomic resequencing of human leukemia. Oncogene. 2010; 29: 3723-31
|
|
|
56) Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003; 3(4) : 253-66
|
|
|
57) Walter MJ, Ding L, Shen D, et al. Recurrent DNMT3A mutations in patients with myelo-dysplastic syndromes. Leukemia. 2011; 25: 1153-8
|
|
|
58) Jankowska AM, Makishima H, Tiu RV, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2 and DNMT3A. Blood. 2011; 118: 3932-41
|
|
|
59) Ehrlich M. The ICF syndrome, a DNA methyl-transferase 3B deficiency and immunodeficiency disease. Clin Immunol. 2003; 109: 17-28
|
|
|
60) Fisher CL, Berger J, Randazzo F, et al. A human homolog of additional sex combs, ADDITIONAL SEX COMBS-LIKE 1, maps to chromosome 20q11. Gene. 2003; 306: 115-26
|
|
|
61) Fisher CL, Lee I, Bloyer S, et al. Additional sex combs-like 1 belongs to the enhancer of trithorax and polycomb group and genetically interacts with Cbx2 in mice. Dev Biol. 2010; 337: 9-15
|
|
|
62) Scheuermann JC, de Ayala Alonso AG, Oktaba K, et al. Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature. 2010; 465: 243-7
|
|
|
63) Lee SW, Cho YS, Na JM, et al. ASXL1 represses retinoic acid receptor-mediated transcription through associating with HP1 and LSD1. J Biol Chem. 2010; 285: 18-29
|
|
|
64) Wang J, Hevi S, Kurash JK, et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet. 2009; 41: 125-9
|
|
|
65) Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009; 145: 788-800
|
|
|
66) Abdel-Wahab O, Pardanani A, Patel J, et al. Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelo-monocytic leukemia and blast-phase myelo-proliferative neoplasms. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, UK. 2011; 25: 1200-2
|
|
|
67) Boultwood J, Perry J, Pellagatti A, et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia. 2010; 24: 1062-5
|
|
|
68) Carbuccia N, Murati A, Trouplin V, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009; 23: 2183-6
|
|
|
69) Carbuccia N, Trouplin V, Gelsi-Boyer V, et al. Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia. 2010; 24: 469-73
|
|
|
70) Gelsi-Boyer V, Trouplin V, Roquain J, et al. ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol. 2010; 151: 365-75
|
|
|
71) Ricci C, Spinelli O, Salmoiraghi S, et al. ASXL1 mutations in primary and secondary myelo-fibrosis. Br J Haematol. 2011; in press
|
|
|
72) Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010; 24: 1128-38
|
|
|
73) Thol F, Friesen I, Damm F, et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011; 29: 2499-506
|
|
|
74) Abdel-Wahab O, Kilpivaara O, Patel J, et al. The most commonly reported variant in ASXL1 (c. 1934dupG; p. Gly646TrpfsX12) is not a somatic alteration. Leukemia. 2010; 24: 1656-7
|
|
|
75) Fisher CL, Pineault N, Brookes C, et al. Loss-of-function additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood. 2010; 115: 38-46
|
|
|
76) Hoischen A, van Bon BW, Rodriguez-Santiago B, et al. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet. 2011; 43: 729-31
|
|
|
77) Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011; 476(7360): 298-303
|
|
|
78) Pasqualucci L, Dominguez-Sola D, Chiarenza A, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011; 471(7337): 189-95
|
|
|
79) Pasqualucci L, Trifonov V, Fabbri G, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011; 43: 830-7
|
|
|
80) Varela I, Tarpey P, Raine K, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011; 469: 539-42
|
|
|
81) Dalgliesh GL, Furge K, Greenman C, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010; 463: 360-3
|
|
|