1) Robinson LA, Schwarz GD, Goddard DB, et al. Myocardial protection for acquired heart disease surgery: Results of a national survey. Ann Thorac Surg. 1995; 59: 361-72
|
|
|
2) Jacob S, Kallikourdis A, Selke F, et al. Is blood cardioplegia superior to crystalloid cardioplegia? Interact Cardiovasc Thorac Surg. 2008; 7: 491-9
|
|
|
3) Mavroudis C, Gevitz M, Ring WS, et al. The society of thoracic surgeons national congenital heart surgery database report. Ann Thorac Surg. 1999; 68: 601-24
|
|
|
4) 小林真理子, 田ノ上禎久, 江藤政尚, 他. 日本の小児心筋保護液使用状況—アンケート調査結果—. 日本小児循環器学会雑誌. 2007; 23: 533-43
|
|
|
5) Ungerleider R. Practice patterns in neonatal cardiopulmonary bypass. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004; 7: 172-9
|
|
|
6) Loop FD, Higgins TL, Panda R, et al. Myocardial protection during cardiac operations: Decreased morbidity and lower cost with blood cardioplegia and coronary sinus perfusion. J Thorac Cardiovasc Surg. 1992; 104; 608-18
|
|
|
7) Flack JE III, Cool JR, May SJ, et al. Does cardioplegia type affect outcome and survival in patients with advanced left ventricular dys-function? Results from the CABG Patch Trial. Circulation. 2000; 102(19 Suppl 3): III84-9
|
|
|
8) Fremes SF, Christakis GT, Weisel RD, et al. A clinical trial of blood and crystalloid cardio-plegia. J Thorac Cardiovasc Surg. 1984; 88: 726
|
|
|
9) Braathen B, Tφnnessen T. Cold blood cardioplegia reduces the increases in cardiac enzyme levels compared with cold crystalloid cardioplegia in patients undergoing aortic valve replacement for isolated aortic stenosis. J Thorac Cardiovasc Surg. 2010; 139: 874-80
|
|
|
10) Ovrum E, Tangen G, Tollofsrud S, et al. Cold blood cardioplegia versus cold crystalloid cardioplegia: a prospective randomized study of 1440 patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2004; 128: 860-5
|
|
|
11) Guru V, Omura J, Alghamdi AA, et al, Is blood superior to crystalloid cardioplegia? A meta-analysis of randomized clinical trials. Circulation. 2006; 114(1 Suppl): I331-8
|
|
|
12) Young JN, Choy IO, Silva NK, et al. Antegrade cold blood cardioplegia is not demonstrably advantageous over cold cryastalloid cardioplegia in surgery for congenital heart disease. J Thorac Cardiovasc Surg. 1997; 114: 1102-9
|
|
|
13) Chaturvedi R, Lincoln C, Gothard J, et al. Left ventricular dysfunction after open repair of simple congenital heart defects in infants and children: quantitation with the use of a conduc-tance catheter immediately after bypass. J Thorac Cardiovasc Surg. 1998; 115: 77-83
|
|
|
14) Amark K, Berggren H, Bjork K, et al. Blood cardioplegia provides superior protection in infant cardiac surgery. Ann Thorac Surg. 2005; 80: 989-94
|
|
|
15) Caputo M, Modi P, Imura H, et al. Cold blood versus cold crystalloid cardioplegia for repair of ventricular septal defects in pediatric heart surgery: a randomized controlled trial. Ann Thorac Surg. 2002; 74: 530-4
|
|
|
16) Modi P, Suleiman MS, Reeves B, et al. Myocardial metabolic changes during pediatric cardiac surgery: a randomized study of 3 cardioplegic techniques. J Thorac Cardiovasc Surg. 2004; 128: 67
|
|
|
17) Allen BS. Pediatric myocardial protection. Where do we stand? J Thorac Cardiovasc Surg. 2004; 128: 11-3
|
|
|
18) OʼBrien JD, Howlett SE, Burton HJ, et al. Pediatric cardioplegia strategy results in enhanced calcium metabolism and lower serum troponin T. Ann Thorac Surg. 2009; 87: 1517-24
|
|
|
19) Imura H, Lin H, Griffiths E, et al. Controlled hyperkalemic reperfusion with magnesium rescues ischemic juvenile hearts by reducing calcium loading. J Thorac Cardiovasc Surg. 2011; 141: 1529-37
|
|
|
20) Murashita T, Yasuda K. The role of Na+/H+ exchange in the efficacy of multidose hypo-thermic cardioplegia in immature rabbit hearts. Eur J Cardiothorac Surg. 2002; 22: 944-50
|
|
|
21) Leung CH, Wang L, Fu YY, et al. Transient mitochondrial permeability transition pore opening after neonatal cardioplegic arrest. J Thorac Cardiovasc Surg. 2011; 141: 975-82
|
|
|
22) Hayashi Y, Sawa Y, Fukuyama N, et al. Leukocyte-depleted terminal blood cardioplegia provides superior myocardial protective effects in association with myocardial derived nitric oxide and peroxynitrite production for patients under-going prolonged aortic crossclamping for more than 120 minutes. J Thorac Cardiovasc Surg. 2003; 126: 1813
|
|
|
23) Toyoda Y, Yamaguchi M, Yoshimura N, et al. Cardioprotective effects and the mechanisms of terminal warm blood cardioplegia in pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2003; 125: 1242
|
|
|
24) Lichtenstein SV, Ashe KA, el Dalati H, et al. Warm heart surgery. J Thorac Cardiovasc Surg. 1991; 101: 269-74
|
|
|
25) Salerno TA, Houck JP, Barrozo CA, et al. Retrograde continuous warm blood cardioplegia: a new concept in myocardial protection. Ann Thoracic Surg. 1991; 51: 245-7
|
|
|
26) Mallidi HR, Sever J, Tamariz M, et al. The short-term and long-term effects of warm or tepid cardioplegia. J Thorac Cardiovasc Surg. 2003; 125: 711-20
|
|
|
27) Fan Y, Zhang A-M, Xiao Y-B, et al. Warm versus cold cardioplegia for heart surgery: a meta-analysis. Eur J Cardiothorac Surg. 2010; 37: 912-9
|
|
|
28) Franke UFW, Korsch S, Wittwer T, et al. Intermittent antegrade warm myocardial protec-tion compared to intermittent cold blood cardio-plegia in elective coronary surgery- do we have to change? Eur J Cardiothorac Surg. 2003; 23: 341-6
|
|
|
29) Durandy Y, Hulin S. Intermittent warm blood cardioplegia in the surgical treatment of congenital heart disease: Clinical experience with 1400 cases. J Thorac Cardiovasc Surg. 2007; 133: 241-6
|
|
|
30) Durandy Y, Younes M, Mahut B. Pediatric warm open heart surgery and prolonged cross-clamp time. Ann Thorac Surg. 2008; 86: 1941-7
|
|
|
31) Dobson GP. Membrane polarity: A target for myocardial protection and reduced inflammation in adult and pediatric cardiothoracic surgery. J Thorac Cardiovasc Surg. 2010; 140: 1213-7
|
|
|
32) Dobson GP, Jones GP. Adenosine and lidocaine: a new concept in nondepolarizing surgical myocardial arrest, protection, and preservation. J Thorac Cardiovasc Surg. 2004; 127: 794-805
|
|
|
33) Sloots K, Dobson GP. Normokalemic adenosine-lidocaine cardioplegia: importance of maintaining a polarized myocardium for optimal arrest and reanimation. J Thorac Cardiovasc Surg. 2010; 139: 1576-86
|
|
|
34) Corvera JS, Kin H, Dobson GP, et al. Polarized arrest with warm or cold adenosine-lidocaine blood cardioplegia is equivalent to hypothermic potassium blood cardioplegia. J Thorac Cardiovasc Surg. 2005; 129: 599-606
|
|
|
35) Wu T, Dong P, Chen C, et al. The myocardial protection of polarizing cardioplegia combined with delta-opioid receptor agonist in swine. Ann Thorac Surg. 2011; 91: 1914-20
|
|
|
36) Rudd D, Dobson GP. Toward a new cold and warm nondepolarizing, normokalemic arrest paradigm for orthotopic heart transplantation. J Thorac Cardiovasc Surg. 2009; 137: 198-207
|
|
|
37) OʼRullian JJ, Clayson SE, Peragallo R. Excellent outcomes in a case of complex re-do surgery requiring prolonged cardioplegia using a new cardioprotective approach: adenocaine. J Extra Corpor Technol. 2008; 40: 203-5
|
|
|
38) Jin ZX, Zhang SL, Wang XM, et al. The myocardial protective effects of a moderate potassium adenosine-lidocaine cardioplegia in pediatric cadiac surgery. J Thorac Cardiovasc Surg. 2008; 136: 1450-5
|
|
|
39) Granfeldt A, Lefer DJ, Vinten-Johanse J. Protective ischaemia in patients: preconditioning and postconditioning. Cardiovasc Res. 2009; 83: 234-46
|
|
|
40) Ramzy D, Rao V, Weisel RD. Clinical applicability of preconditioning and postconditiong: the cardiothoracic surgeonʼs view. Cardiovasc Res. 2006; 70: 174-80
|
|
|
41) Faris B, Peynet J, Wassef M, et al. Failure of preconditioning to improve postcardioplegia stunning of minimally infracted hearts. Ann Thorac Surg. 1997; 64: 1735-41
|
|
|
42) Yellon DM, Alkhulaifi AM, Pugsley WB. Preconditioning the human myocardium. Lancet. 1993; 342: 276-7
|
|
|
43) Teoh LK, Grant R, Hulf JA, et al. A comparison between ischemic preconditioning, intermittent cross-clamp fibrillation and cold crystalloid cardioplegia for myocardial protection during coronary artery bypass graft surgery. Cardiovasc Surg. 2002; 10: 251-5
|
|
|
44) Li G, Chen S, Lu E, et al. Ischemic precon-ditioning improves preservation with cold blood cardioplegia in valve replacement patients. Eur J Cardiothorac Surg. 1999; 15: 653-7
|
|
|
45) Illes RW, Swoyer KD. Prospective randomized clinical study of ischemic preconditioning as an adjunct to intermittent cold blood cardioplegia. Ann Thorac Surg. 1998; 65: 748-52
|
|
|
46) Jenkins DP, Pugsley WB, Alkhulaifi AM, et al. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart. 1997; 77: 314-8
|
|
|
47) Pego-Fernandes PM, Jatene FB, Kwasnicka K, et al. Ischemic preconditioning in myocardial revascularization with intermittent aortic cross-clamping. J Card Surg. 2000; 15: 333-8
|
|
|
48) Ghosh S, Galiñanes M. Protection of the human heart with ischemic preconditioning during cardiac surgery: role of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2003; 126: 133-42
|
|
|
49) Cremer J, Karck M, Ahnsel T, et al. Ischemic preconditioning as an adjunct to crysatalloid or blood cadioplegia for myocardial protection in routine coronary surgery. Thorac Cardiovasc Surg. 1998; 46: 298-301
|
|
|
50) Perrault LP, Menasche P, Bel A, et al. Ischemic preconditioning in cardiac surgery: a word of caution. J Thorac Cardiovasc Surg. 1996; 112: 1378-86
|
|
|
51) Walsh SR, Tang TY, Kullar P, et al. Ischaemic preconditioning during cardiac surgery: systemic review and meta-analysis of perioperative outcomes in randomized clinical trials. Eur J Cardiothorac Surg. 2008; 34: 985-94
|
|
|
52) Takano H, Qiu Y, Guo Y, et al. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res. 1998; 83: 73-84
|
|
|
53) Shiva S, Sack MN, Greer JJ, et al. Nitrite augments tolerance to ischemia/ reperfusion injury via the modulation of mitochondrial elec-tron transfer. J Exp Med. 2007; 204: 2089-102
|
|
|
54) Das A, Xi L, Kukreja RC. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem. 2005; 280: 12944-55
|
|
|
55) Calvert JW, Gundewar S, Jha S, et al. Acute metformin therapy confers cadioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes. 2008; 57: 696-705
|
|
|
56) Thornton JD, Liu GS, Olsson RA, et al. Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction. Circulation. 1992; 85: 659-65
|
|
|
57) Toombs CF, McGee DS, Johnston WE, et al. Myocardial protective effects of adenosine infarct size reduction with pretreatment and continued receptor stimulation during ischemia. Circulation. 1992; 86: 986-94
|
|
|
58) Wall TM, Sheehy R, Hartman JC. Role of bradykinin in myocardial preconditioning. J Pharmacol Exp Ther. 1994; 270: 681-9
|
|
|
59) Schultz JE, Gross GJ. Opioids and cardio-protection. Pharmacol Ther. 2001; 89: 123-37
|
|
|
60) Elrod JW, Greer JJ, Bryan NS, et al. Cardiomyocyte-specific overexpression of NO synthase-3 protects against myocardial ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol. 2006; 26: 1517-23
|
|
|
61) Wolfrum S, Schneider K, Heidbreder M, et al. Remote preconditioning protects the heart by activating myocardial PKCepsilon-isoform. Cardiovasc Res. 2002; 55: 583-9
|
|
|
62) Weinbrenner C, Nelles M, Herzog N, et al. Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction: a newly identified non-neuronal but PKC-depen-dent pathway. Cardiovasc Res. 2002; 55: 590-601
|
|
|
63) Kharbanda RK, Li J, Konstantinov IE, et al. Remote ischaemic preconditioning protects against cardiopulmonary bypass- induced tissue injury: a preclinical study. Heart. 2006; 92: 1506-11
|
|
|
64) Gunaydin B, Cakici I, Soncul H, et al. Does remote organ ischaemia trigger cardiac preconditioning during coronary artery surgery? Pharmacol Res. 2000; 41: 493-6
|
|
|
65) Hausen DJ, Mwamure PK, Venugopal V, et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coro-nary artery bypass graft surgery: a randomized controlled trial. Lancet. 2007; 370: 575-9
|
|
|
66) Venugopal V, Hausenloy DJ, Ludman A, et al. Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold-blood cardioplegia: a random-ized controlled trial. Heart. 2009; 95: 1567-71
|
|
|
67) Cheung MM, Kharbanda RK, Konstantinov IE, et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical appli-cation in humans. J Am Coll Cardiol. 2006; 47: 2277-82
|
|
|
68) Li L, Luo W, Huang L, et al. Remote percon-ditioning reduces myocardial injury in adult valve replacement: a randomized controlled trial. J Surg Res. 2010; 164: e21-6
|
|
|
69) Rahman IA, Mascaro JG, Steeds RP, et al. Remote ischemic preconditioning in human coronary artery bypass surgery: From promise to disappointment? Circulation. 2010; 122: S53-9
|
|
|
70) Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003; 285: H579-88
|
|
|
71) Kin H, Zhao ZQ, Sun HY, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes reperfusion. Cardiovasc Res. 2004; 62: 74-85
|
|
|
72) Tsang A, Hausenloy DJ, Mocanu MM, et al. Postconditioning: a form of “modified reper-fusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res. 2004; 95: 230-2
|
|
|
73) Halkos ME, Kerendi F, Corvera JS, et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg. 2004; 78: 961-9
|
|
|
74) Staat P, Rioufol G, Piot C, et al. Postconditioning the human heart. Circulation. 2005; 112: 2143-8
|
|
|
75) Pinheiro BB, Fiorelli AI, Gomes OM. Effects of ischemic postconditioning on left ventricular function of isolated rat hearts. Res Bras Cir Cardiovasc. 2009; 24: 31-7
|
|
|
76) Shinohara G, Morita K, Nagahori R, et al. Ischemic postconditioning promotes left ventric-ular functional recovery after cardioplegic arrest in an in vivo piglet model of global ischemia reperfusion injury in cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2011 in press
|
|
|
77) Luo W, Li B, Lin G, et al. Postconditioning in cardiac surgery for tetralogy of Fallot. J Thorac Cardiovasc Surg. 2007; 133: 1373-4
|
|
|
78) Luo W, Li B, Chen R, et al. Effects of ischemic postconditioning in adult valve replacement. Eur J Cardiothorac Surg. 2008; 33: 203-8
|
|
|
79) Zhao AO, Vinten-Johansen J. Review Post-conditioning: reduction of reperfusion-induced injury. Cardiovasc Res. 2006; 70: 200-11
|
|
|
80) Jin ZX, Zhou JJ, Xin M, et al. Postconditioning the human heart with adenosine in heart valve replacement surgery. Ann Thorac Surg. 2007; 83: 2066-73
|
|
|
81) Kerendi F, Kin H, Halkos ME, et al. Remote postconditioning brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res Cardiol. 2005; 100: 404-12
|
|
|