1) Alfakih K, Plein S, Thiele H, et al. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging. 2003; 17: 323-9
|
|
|
2) Mooij CF, de Wit CJ, Graham DA, et al. Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J Magn Reson Imaging. 2008; 28: 67-73
|
|
|
3) Debl K, Djavidani B, Buchner S, et al. Quan-tification of left-to-right shunting in adult con-genital heart disease: phase-contrast cine MRI compared with invasive oximetry. Br J Radiol. 2009; 82: 386-91
|
|
|
4) Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999; 100: 1992-2002
|
|
|
5) Babu-Narayan SV, Kilner PJ, Li W, et al. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation. 2006; 113: 405-13
|
|
|
6) Rathod RH, Prakash A, Powell AJ, et al. Myo-cardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is asso-ciated with adverse ventricular mechanics and ventricular tachycardia late after Fontan opera-tion. J Am Coll Cardiol. 2010; 55: 1721-8
|
|
|
7) Pflugfelder PW, Sechtem UP, White RD, et al. Quantification of regional myocardial function by rapid cine MR imaging. AJR Am J Roentgenol. 1988; 150: 523-9
|
|
|
8) Rogers WJ, Jr, Shapiro EP, Weiss JL, et al. Quantification of and correction for left ven-tricular systolic long-axis shortening by magnetic resonance tissue tagging and slice isolation. Circulation. 1991; 84: 721-31
|
|
|
9) Razavi R, Hill DL, Keevil SF, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet. 2003; 362: 1877-82
|
|
|
10) Katoh M, Spuentrup E, Barmet C, et al. Local re-inversion coronary MR angiography: arterial spin-labeling without the need for subtraction. J Magn Reson Imaging. 2008; 27: 913-7
|
|
|
11) Henderson AC, Prisk GK, Levin DL, et al. Characterizing pulmonary blood flow distribution measured using arterial spin labeling. NMR Biomed. 2009; 22: 1025-35
|
|
|
12) Iles L, Pfluger H, Phrommintikul A, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 2008; 52: 1574-80
|
|
|
13) Goldfarb JW, Roth M, Han J. Myocardial fat deposition after left ventricular myocardial infarction: assessment by using MR water-fat separation imaging. Radiology. 2009; 253: 65-73
|
|
|
14) Nield LE, Qi XL, Valsangiacomo ER, et al. In vivo MRI measurement of blood oxygen saturation in children with congenital heart disease. Pediatr Radiol. 2005; 35: 179-85
|
|
|
15) Nordmeyer S, Berger F, Kuehne T, et al. Flow-sensitive four-dimensional magnetic resonance imaging facilitates and improves the accurate diagnosis of partial anomalous pulmonary venous drainage. Cardiol Young. 2011; 21: 528-35
|
|
|
16) Bieging ET, Frydrychowicz A, Wentland A, et al. In vivo three-dimensional MR wall shear stress estimation in ascending aortic dilatation. J Magn Reson Imaging. 2011; 33: 589-97
|
|
|
17) Rihal CS, Textor SC, Grill DE, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002; 105: 2259-64
|
|
|
18) McCullough PA, Wolyn R, Rocher LL, et al. Acute renal failure after coronary intervention: Inci-dence, risk factors, and relationship to mortality. Am J Med. 1997; 103: 368-75
|
|
|
19) Quintavalle C, Brenca M, De Micco F, et al. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis. Cell Death Dis. 2011; 2: e155
|
|
|
20) Agmon Y, Peleg H, Greenfeld Z, et al. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. J Clin Invest. 1994; 94: 1069-75
|
|
|
21) Prasad PV, Priatna A, Spokes K, et al. Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J Magn Reson Imaging. 2001; 13: 744-7
|
|
|
22) Lancelot E, Idee JM, Couturier V, et al. Influence of the viscosity of iodixanol on medullary and cortical blood flow in the rat kidney: a potential cause of Nephrotoxicity. J Appl Toxicol. 1999; 19: 341-6
|
|
|
23) Thomsen HS, Morcos SK. Contrast media and the kidney: European Society of Urogenital Radiology (ESUR) Guidelines. Br J Radiol. 2003; 76: 513-8
|
|
|
24) Inatomi J, Matsuoka K, Fujimaru R, et al. Mechanisms of development and progression of cyanotic nephropathy. Pediatr Nephrol. 2006; 21: 1440-5
|
|
|
25) Perloff JK, Latta H, Barsotti P. Pathogenesis of the glomerular abnormality in cyanotic congenital heart disease. Am J Cardiol. 2000; 86: 1198-204
|
|
|
26) Pannu N, Wiebe N, Tonelli M. Prophylaxis strategies for contrast-induced nephropathy. JAMA. 2006; 295: 2765-79
|
|
|
27) Briguori C, Airoldi F, DʼAndrea D, et al. Renal Insufficiency Following Contrast Media Administration Trial (REMEDIAL). Circulation. 2007; 115: 1211-7
|
|
|
28) 日本腎臓病学会, 編. エビデンスに基づくCKD診療ガイドライン 2009. 東京: 東京医学社; 2009
|
|
|
29) Marckmann P. Nephrogenic systemic fibrosis: epidemiology update. Curr Opin Nephrol Hypertens. 2008; 17: 315-9
|
|
|
30) Broome DR, Girguis MS, Baron PW, et al. Gadodiamide-associated nephrogenic systemic fibrosis: Why radiologists should be concerned. AJR. 2007; 188: 586-92
|
|
|
31) 日本腎臓病学会. 腎障害患者におけるガドリニウム造影剤使用に関するガイドライン. 2009
|
|
|
32) Einstein AJ, Weiner SD, Bernheim A, et al. Multiple testing, cumulative radiation dose, and clinical indications in patients undergoing myocardial perfusion imaging. JAMA. 2010; 304: 2137-44
|
|
|
33) 近藤千里. 小児心血管画像検査の放射線被曝リスクの考え方. 日小循誌. 2009; 25: 659-64
|
|
|
34) Brenner D, Elliston C, Hall E, et al. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001; 176: 289-96
|
|
|
35) Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA. 2007; 298: 317-23
|
|
|
36) Einstein AJ, Moser KW, Thompson RC, et al. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007; 116: 1290-305
|
|
|
37) Abbara S, Arbab-Zadeh A, Callister TQ, et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2009; 3: 190-204
|
|
|
38) Moscariello A, Takx RA, Schoepf UJ, et al. Coronary CT angiography: image quality, diagnos-tic accuracy, and potential for radiation dose re-duction using a novel iterative image reconstruc-tion technique-comparison with traditional filtered back projection. Eur Radiol. 2011; 21: 2130-8
|
|
|
39) Lee JH, Chun EJ, Choi SI, et al. Prospective versus retrospective ECG-gated 64-detector coronary CT angiography for evaluation of coronary artery bypass graft patency: comparison of image quality, radiation dose and diagnostic accuracy. Int J Cardiovasc Imaging. 2011; 27: 657-67
|
|
|
40) Jeong DW, Choo KS, Baik SK, et al. Step-and-shoot prospectively ECG-gated versus retro-spectively ECG-gated with tube current modula-tion coronary CT angiography using the 128-slice MDCT: comparison of image quality and radia-tion dose. Acta Radiol. 2011; 52: 155-60
|
|
|
41) Schenzle JC, Sommer WH, Neumaier K, et al. Dual energy CT of the chest: how about the dose? Invest Radiol. 2010; 45: 347-53
|
|
|