1) Cleutjens JP, Verluyten MJ, Smiths JF, et al. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995; 147: 325-38
|
|
|
2) van Tuyn J, Atsma DE, Winter EM, et al. Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells. 2007; 25: 271-8
|
|
|
3) Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contri-butes to cardiac fibrosis. Nat Med. 2007; 13: 952-61
|
|
|
4) Aisagbonhi O, Rai M, Ryzhov S, et al. Exper-imental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech. 2011; 4: 469-83
|
|
|
5) Willems IE, Havenith MG, De Mey JG, et al. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol. 1994; 145: 868-75
|
|
|
6) Ikeuchi M, Tsutsui H, Shiomi T, et al. Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res. 2004; 64: 526-35
|
|
|
7) Eghbali M, Tomek R, Sukhatme VP, et al. Differential effects of transforming growth factor-beta 1 and phorbol myristate acetate on cardiac fibroblasts. Regulation of fibrillar collagen mRNAs and expression of early transcription factors. Circ Res. 1991; 69: 483-90
|
|
|
8) Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci. 2004; 35: 83-92
|
|
|
9) Frantz S, Hu K, Adamek A, et al. Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol. 2008; 103: 485-92
|
|
|
10) Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem. 2001; 276: 17058-62
|
|
|
11) Campbell SE, Katwa LC. Angiotensin II stimu-lated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol. 1997; 29: 1947-58
|
|
|
12) van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, et al. Stretch-induced paracrine hypertrophic stimuli increase TGF-beta1 expres-sion in cardiomyocytes. Mol Cell Biochem. 2002; 236(1-2): 147-53
|
|
|
13) Yamamuro M, Yoshimura M, Nakayama M, et al. Aldosterone, but not angiotensin II, reduces angiotensin converting enzyme 2 gene expression levels in cultured neonatal rat cardiomyocytes. Circ J. 2008; 72: 1346-50
|
|
|
14) Brown NJ, Kim KS, Chen YQ, et al. Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production. J Clin Endocrinol Metab. 2000; 85: 336-44
|
|
|
15) Dong S, Cheng Y, Yang J, et al. MicroRNA expression signature and the role of micro RNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 2009; 284: 29514-25
|
|
|
16) van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008; 105: 13027-32
|
|
|
17) Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009; 104: 170-8, 6p following 8
|
|
|
18) Dean RG, Balding LC, Candido R, et al. Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem. 2005; 53: 1245-56
|
|
|
19) Bostjancic E, Zidar N, Stajer D, et al. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology. 2010; 115: 163-9
|
|
|
20) Shan H, Zhang Y, Lu Y, et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc Res. 2009; 83: 465-72
|
|
|
21) Roy S, Khanna S, Hussain SR, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metallo-protease-2 via phosphatase and tensin homolo-gue. Cardiovasc Res. 2009; 82: 21-9
|
|
|
22) van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007; 316: 575-9
|
|
|
23) Kessler E, Takahara K, Biniaminov L, et al. Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science. 1996; 271: 360-2
|
|
|
24) Hulmes DJ. Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol. 2002; 137(1-2): 2-10
|
|
|
25) Takahara K, Kessler E, Biniaminov L, et al. Type I procollagen COOH-terminal proteinase enhanc-er protein: identification, primary structure, and chromosomal localization of the cognate human gene (PCOLCE). J Biol Chem. 1994; 269: 26280-5
|
|
|
26) Steiglitz BM, Keene DR, Greenspan DS. PCOLCE2 encodes a functional procollagen C-proteinase enhancer (PCPE2) that is a collagen-binding protein differing in distribution of expression and post-translational modification from the previously described PCPE1. J Biol Chem. 2002; 277(51): 49820-30
|
|
|
27) Kessler-Icekson G, Schlesinger H, Freimann S, et al. Expression of procollagen C-proteinase enhancer-1 in the remodeling rat heart is stimu-lated by aldosterone. Int J Biochem Cell Biol. 2006; 38: 358-65
|
|
|
28) Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998; 14: 59-88
|
|
|
29) Kobayashi K, Luo M, Zhang Y, et al. Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol. 2009; 11: 46-55
|
|
|