1) Corriden R, Insel PA. Basal release of ATP: An autocrine-paracrine mechanism for cell regulation. Sci Signal. 2010; 3: re1
|
|
|
2) Dʼhondt C, Ponsaerts R, De Smedt H, et al. Pannexin channels in ATP release and beyond: An unexpected rendezvous at the endoplasmic reticulum. Cell Signal. 2011; 23: 305-16
|
|
|
3) Seminario-Vidal L, Okada SF, Sesma JI, et al. Rho signaling regulates pannexin 1-mediated ATP release from airway epithelia. J Biol Chem. 2011; 286: 26277-86
|
|
|
4) Jacobson KA, Boeynaems J-M. P2Y nucleotide receptors: promise of therapeutic applications. Drug Discov Today. 2010; 15: 570-8
|
|
|
5) Musa H, Tellez JO, Chandler NJ, et al. P2 purinergic receptor mRNA in rat and human sinoatrial node and other heart regions. Naunyn Schmiedebergs Arch Pharmacol. 2009; 379: 541-9
|
|
|
6) Kawate T, Michel JC, Birdsong1 WT, et al. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature. 2009; 460: 592-8
|
|
|
7) Yamamoto K, Sokabe T, Matsumoto T, et al. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med. 2006; 12: 133-7
|
|
|
8) Yang A, Sonin D, Jones L, et al. A beneficial role of cardiac P2X4 receptors in heart failure: rescue of the calsequestrin overexpression model of cardiomyopathy. Am J Physiol Heart Circ Physiol. 2004; 287: H1096-H103
|
|
|
9) Zhou S-Y, Mamdani M, Qanud K, et al. Treatment of heart failure by a methanocarba derivative of adenosine monophosphate: Implication for a role of cardiac purinergic P2X receptors. J Pharmacol Exp Ther. 2010; 333: 920-28
|
|
|
10) Vessey DA, Li L, Kelley M. P2X7 receptor agonists pre- and post-condition the heart against ischemia reperfusion injury by opening pann-exin-1/P2X7 channels. Am J Physiol Heart Circ Physiol. 2011; 301: H881-7
|
|
|
11) Vessey DA, Li L, Kelley M. Ischemic precon-ditioning requires opening of pannexin-1/P2X7 channels not only during preconditioning but again after index ischemia at full reperfusion. Mol Cell Biochem. 2011; 351: 77-84
|
|
|
12) Nörenberg W, Hempel C, Urban N, et al. Clemastine potentiates the human P2X7 receptor by sensitizing it to lower ATP concentrations. J Biol Chem. 2011; 286: 11067-81
|
|
|
13) Nishida M, Sato Y, Uemura A, et al. P2Y6 receptor-Gα12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. EMBO J. 2008; 27: 3104-15
|
|
|
14) Opar A. Excitement mounts for first disease-modifying cystic fibrosis drugs. Nature Rev Drug Discov. 2011; 10: 479-2
|
|
|
15) Yitzhaki S, Hochhauser E, Porat E, et al. Uridine-5ʼ-triphosphate (UTP) maintains cardiac mitochondrial function following chemical and hypoxic stress. J Mol Cell Cardiol. 2007; 43: 653-62
|
|
|
16) Wihlborg A-K, Balogh J, Wang L, et al. Positive inotropic effects by uridine triphosphate (UTP) and uridine diphosphate (UDP) via P2Y2 and P2Y6 receptors on cardiomyocytes and release of UTP in man during myocardial infarction. Circ Res. 2006; 98: 970-6
|
|
|
17) Balogh J, Wihlborg A-K, Isackson H, et al. Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y11-like receptors. J Mol Cell Cardiol. 2005; 39: 223-30
|
|
|
18) Ecke D, Hanck T, Tulapurkar ME, et al. Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J. 2008; 409: 107-16
|
|
|
19) Headrick JP, Robert D. Lasley RD. Adenosine receptors and reperfusion injury of the heart. Handb Exp Pharmacol. 2009; 193: 189-214
|
|
|
20) Billaud M, Lohman AW, Straub AC, et al. Pannexin1 regulates α1-adrenergic receptor-medi-ated vasoconstriction. Circ Res. 2011; 109: 80-5
|
|
|