1) Manasek FJ. Embryonic development of the heart. II. Formation of the epicardium. J Embryol Exp Morphol. 1969; 22: 333-48
|
|
|
2) Hiruma T, Hirakow R. Epicardial formation in embryonic chick heart: computer-aided reconstruction, scanning, and transmission electron microscopic studies. Am J Anat. 1989; 184: 129-38
|
|
|
3) Ho E, Shimada Y. Formation of the epicardium studied with the scanning electron microscope. Dev Biol. 1978; 66: 579-85
|
|
|
4) Manner J. The development of pericardial villi in the chick embryo. Anat Embryol (Berl). 1992; 186: 379-85
|
|
|
5) Viragh S, Gittenberger-de Groot AC, Poelmann RE, et al. Early development of quail heart epicardium and associated vascular and glandu-lar structures. Anat Embryol (Berl). 1993; 188: 381-93
|
|
|
6) Nahirney PC, Mikawa T, Fischman DA. Evidence for an extracellular matrix bridge guiding pro-epicardial cell migration to the myocardium of chick embryos. Dev Dyn. 2003; 227: 511-23
|
|
|
7) Dettman RW, Denetclaw W, Jr, Ordahl CP, et al. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol. 1998; 193: 169-81
|
|
|
8) Perez-Pomares JM, et al. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol. 2002; 46: 1005-13
|
|
|
9) Mikawa T, Fischman DA. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci U S A. 1992; 89: 9504-8
|
|
|
10) Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996; 174: 221-32
|
|
|
11) Poelmann RE, Gittenberger-de Groot AC, Mentink MM, et al. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res. 1993; 73: 559-68
|
|
|
12) Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink, MM, et al. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998; 82: 1043-52
|
|
|
13) Manner J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primor-dium. Anat Rec. 1999; 255: 212-26
|
|
|
14) Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, et al. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol (Berl). 1999; 199: 367-78
|
|
|
15) Manner J. Experimental study on the formation of the epicardium in chick embryos. Anat Embryol (Berl). 1993; 187: 281-9
|
|
|
16) Kwee L, et al. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development. 1995; 121: 489-503
|
|
|
17) Yang JT, Rayburn H, Hynes RO. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development. 1995; 121: 549-60
|
|
|
18) Moore AW, McInnes L, Kreidberg J, et al. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development. 1999; 126: 1845-57
|
|
|
19) Pennisi DJ, Ballard VL, Mikawa T. Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn. 2003; 228: 161-72
|
|
|
20) Eralp I, et al. Coronary artery and orifice development is associated with proper timing of epicardial outgrowth and correlated Fas-ligand-associated apoptosis patterns. Circ Res. 2005; 96: 526-34
|
|
|
21) Hidai H, Bardales R, Goodwin R, et al. Cloning of capsulin, a basic helix-loop-helix factor expressed in progenitor cells of the pericardium and the coronary arteries. Mech Dev. 1998; 73: 33-43
|
|
|
22) Carmona R, Gonzalez-Iriarte M, Perez-Pomares JM, et al. Localization of the Wilmʼs tumour protein WT1 in avian embryos. Cell Tissue Res. 2001; 303: 173-86
|
|
|
23) Kraus F, Haenig B, Kispert A. Cloning and expression analysis of the mouse T-box gene Tbx18. Mech Dev. 2001; 100: 83-6
|
|
|
24) Ishii Y, Langberg JD, Hurtado R, et al. Induction of proepicardial marker gene expression by the liver bud. Development. 2007; 134: 3627-37
|
|
|
25) von Scheven G, Bothe I, Ahmed MU, et al. Protein and genomic organisation of vertebrate MyoR and Capsulin genes and their expression during avian development. Gene Expr Patterns. 2006; 6: 383-93
|
|
|
26) Schlueter J, Manner J, Brand T. BMP is an important regulator of proepicardial identity in the chick embryo. Dev Biol. 2006; 295: 546-58
|
|
|
27) Schulte I, Schlueter J, Abu-Issa R, et al. Morphological and molecular left-right asym-metries in the development of the proepicardium: a comparative analysis on mouse and chick embryos. Dev Dyn. 2007; 236: 684-95
|
|
|
28) Saga Y, Kitajima S, Miyagawa-Tomita S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med. 2000; 10: 345-52
|
|
|
29) Zhou B, von Gise A, Ma Q, et al. Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun. 2008; 375: 450-3
|
|
|
30) Zhou B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008; 454: 109-13
|
|
|
31) Watt AJ, Battle MA, Li J, et al. GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci U S A. 2004; 101: 12573-8
|
|
|
32) Rojas A, et al. Gata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer element. Development. 2005; 132: 3405-17
|
|
|
33) Schlueter J, Brand T. A right-sided pathway involving FGF8/Snai1 controls asymmetric development of the proepicardium in the chick embryo. Proc Natl Acad Sci U S A. 2009; 106: 7485-90
|
|
|
34) Nesbitt T, et al. Epicardial development in the rat: a new perspective. Microsc Microanal. 2006; 12: 390-8
|
|
|
35) Jahr M, Schlueter J, Brand T, et al. Development of the proepicardium in Xenopus laevis. Dev Dyn. 2008; 237: 3088-96
|
|
|
36) Komiyama M, Ito K, Shimada Y. Origin and development of the epicardium in the mouse embryo. Anat Embryol (Berl). 1987; 176: 183-9
|
|
|
37) Kuhn HJ, Liebherr G. The early development of the epicardium in Tupaia belangeri. Anat Embryol (Berl). 1988; 177: 225-34
|
|
|
38) Munoz-Chapuli R, Macias D, Ramaos C, et al. Development of the epicardium in the dogfish (Scyliorhinus canicula). Acta Zoologica. 1997; 78: 39-46
|
|
|
39) Fransen ME, Lemanski LF. Epicardial devel-opment in the axolotl, Ambystoma mexicanum. Anat Rec. 1990; 226: 228-36
|
|
|
40) Icardo JM, et al. The development of the epicardium in the sturgeon Acipenser naccarii. Anat Rec (Hoboken). 2009; 292: 1593-601
|
|
|
41) Rodgers LS, Lalani S, Runyan RB, et al. Differential growth and multicellular villi direct proepicardial translocation to the developing mouse heart. Dev Dyn. 2008; 237: 145-52
|
|
|
42) Ishii Y, Garriock RJ, Navetta AM, et al. BMP signals promote proepicardial protrusion neces-sary for recruitment of coronary vessel and epicar-dial progenitors to the heart. Dev Cell. 2010; 19: 307-16
|
|
|
43) Sengbusch JK, He W, Pinco KA, et al. Dual functions of [alpha]4 [beta]1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol. 2002; 157: 873-82
|
|
|
44) Manasek FJ. The appearance of granules in the Golgi complex of embryonic cardiac myocytes. J Cell Biol. 1969; 43: 605-10
|
|
|
45) Jenkins SJ, Hutson DR, Kubalak SW. Analysis of the proepicardiumepicardium transition during the malformation of the RXRalpha-/- epicardium. Dev Dyn. 2005; 233: 1091-101
|
|
|
46) Wessels A, Perez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004; 276: 43-57
|
|
|
47) Perez-Pomares JM, Macias D, Garcia-Garrido L, et al. Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn. 1997; 210: 96-105
|
|
|
48) Tidball JG. Distribution of collagens and fibronectin in the subepicardium during avian cardiac development. Anat Embryol (Berl). 1992; 185: 155-62
|
|
|
49) Bouchey D, Drake CJ, Wunsch AM, et al. Distribution of connective tissue proteins during development and neovascularization of the epicardium. Cardiovasc Res. 1996; 31 Spec No: E104-15
|
|
|
50) Kalman F, Viragh S, Modis L. Cell surface glycoconjugates and the extracellular matrix of the developing mouse embryo epicardium. Anat Embryol (Berl). 1995; 191: 451-64
|
|
|
51) Morabito CJ, Dettman RW, Kattan J, et al. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol. 2001; 234: 204-15
|
|
|
52) Compton LA, Potash DA, Mundell NA, et al. Transforming growth factor-beta induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells. Dev Dyn. 2006; 235: 82-93
|
|
|
53) Olivey HE, Mundell NA, Austin AF, et al. Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev Dyn. 2006; 235: 50-9
|
|
|
54) Tevosian SG, et al. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell. 2000; 101: 729-39
|
|
|
55) Lie-Venema H, et al. Ets-1 and Ets-2 transcription factors are essential for normal coronary and myocardial development in chicken embryos. Circ Res. 2003; 92: 749-56
|
|
|
56) Zamora M, Manner J, Ruiz-Lozano P. Epicar-dium-derived progenitor cells require beta-catenin for coronary artery formation. Proc Natl Acad Sci U S A. 2007; 104: 18109-14
|
|
|
57) Wu M, et al. Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell. 2010; 19: 114-25
|
|
|
58) Lie-Venema H, et al. Myocardial heterogeneity in permissiveness for epicardium-derived cells and endothelial precursor cells along the developing heart tube at the onset of coronary vasculari-zation. Anat Rec A Discov Mol Cell Evol Biol. 2005; 282: 120-9
|
|
|
59) Mellgren AM, et al. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and develop-ment of two distinct coronary vascular smooth muscle cell populations. Circ Res. 2008; 103: 1393-401
|
|
|
60) Kattan J, Dettman RW, Bristow J. Formation and remodeling of the coronary vascular bed in the embryonic avian heart. Dev Dyn. 2004; 230: 34-43
|
|
|
61) Cai CL, et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008; 454: 104-8
|
|
|
62) Red-Horse K, Ueno H, Weissman IL, et al. Coronary arteries form by developmental repro-gramming of venous cells. Nature. 2010; 464: 549-53
|
|
|
63) Ishii Y, Langberg J, Rosborough K, et al. Endothelial cell lineages of the heart. Cell Tissue Res. 2009; 335: 67-73
|
|
|
64) Vrancken Peeters M-PFM, et al. The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev Dyn. 1997; 208: 338-48
|
|
|
65) Kalin RE, et al. Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol. 2007; 305: 599-614
|
|
|
66) Kikuchi K, et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regene-ration. Dev Cell. 2011; 20: 397-404
|
|
|
67) Kruithof BP, et al. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol. 2006; 295: 507-22
|
|
|
68) Smart N, et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovas-cularization. Nature. 2007; 445: 177-82
|
|
|
69) Smart N, et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011; 474: 640-4
|
|
|