医中誌リンクサービス


文献リスト

1) Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011; 12: 21-35
PubMed CrossRef
医中誌リンクサービス
2) Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009; 20: 1981-91
PubMed CrossRef
医中誌リンクサービス
3) Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009; 20: 1992-2003
PubMed CrossRef
医中誌リンクサービス
4) Ganley IG, Lam DH, Wang J, et al. ULK1-ATG12-FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009; 284: 12297-305
PubMed CrossRef
医中誌リンクサービス
5) Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008; 320: 1496-501
PubMed
医中誌リンクサービス
6) Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004; 14: 1296-302
PubMed CrossRef
医中誌リンクサービス
7) Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004; 6: 1122-8
PubMed CrossRef
医中誌リンクサービス
8) Huang J, Wu S, Wu CL, et al. Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tissues deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res. 2009; 69: 6107-14
PubMed
医中誌リンクサービス
9) Kwiatkowski DJ. Rat and mouse models of tuberous sclerosis. In: Kwiatkowski DJ, et al. editors. Tuberous sclerosis complex. Weinheim: Wiley-Blackwell; 2010. p.117-43
医中誌リンクサービス
10) Bissler JJ, McCormack FX, Young LR, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med. 2008; 358: 140-51
PubMed CrossRef
医中誌リンクサービス
11) Davies DM, Johnson SR, Tattersfield AE, et al. Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N Engl J Med. 2008; 358: 200-3
PubMed CrossRef
医中誌リンクサービス
12) Kruger DA, Care MM, Holland K, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010; 363: 1801-11
PubMed CrossRef
医中誌リンクサービス
13) Parkhitko A, Myachina F, Morrison TA, et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci U S A. 2011; 108: 12455-60
PubMed CrossRef
医中誌リンクサービス
14) Hsu PP, Kang SA, Rameseder J, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011; 332: 1317-22
PubMed
医中誌リンクサービス
15) Yu Y, Yoon SO, Poulogiannis G, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011; 332: 1322-6
PubMed
医中誌リンクサービス
16) Duvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010; 39: 171-83
PubMed CrossRef
医中誌リンクサービス
17) Land SC, Tee AR. Hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem. 2007; 282: 20534-43
PubMed CrossRef
医中誌リンクサービス
18) Toschi A, Lee E, Gadir N, et al. Differential dependence of hypoxia-inducible factors 1 and 2 on mTORC1 and mTORC2. J Biol Chem. 2008; 283: 34495-9
PubMed CrossRef
医中誌リンクサービス
19) Fujisaka Y, Yamada Y, Yamamoto N, et al. A phase I clinical study of temsirolimus (CCI-779) in Japanese patients with advanced solid tumors. Jpn J Clin Oncol. 2010; 40: 732-8
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
20) Tsukamoto T, Shinohara N, Tsuchiya N, et al. Phase III trial of everolimus in metastatic renal cell carcinoma: subgroup analysis of Japanese patients from RECORD-1. Jpn J Clin Oncol. 2011; 41: 17-24
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
21) DeYoung MP, Horak P, Sofer A, et al. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008; 22: 239-51
PubMed CrossRef
医中誌リンクサービス
22) Cam H, Easton JB, High A, et al. mTORC1 signaling under hypoxic condition is controlled by ATM-dependent phosphorylation of HIF-1α. Mol Cell. 2010; 40: 509-20
PubMed CrossRef
医中誌リンクサービス
23) Wolff NC, Vega-Rubin-de-Celis S, Xie XJ, et al. Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol Cell Biol. 2011; 31: 1870-84
PubMed CrossRef
医中誌リンクサービス
24) Distefano G, Boca M, Rowe I, et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K1 and 4EBP1. Mol Cell Biol. 2009; 29: 2359-71
PubMed CrossRef
医中誌リンクサービス
25) Dere R, Wilson PD, Sandford RN, et al. Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS ONE. 2010; 5: e9239
CrossRef
医中誌リンクサービス
26) Traykova-Brauch M, Schönig K, Greiner O, et al. An efficient and versatile system for acute and chronic modulation of renal tubular function in transgenic mice. Nat Med. 2008; 14: 979-84
PubMed CrossRef
医中誌リンクサービス
27) Zhou J, Brugarolas J, Parada LF. Loss of Tsc1, but not Pten, in renal tubular cells causes polycystic kidney disease by activating mTORC1. Hum Mol Genet. 2009; 18: 4428-41
PubMed CrossRef
医中誌リンクサービス
28) Tao Y, Kim J, Schrier RW, et al. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol. 2005; 16: 46-51
PubMed
医中誌リンクサービス
29) Shillingford JM, Piontek KB, Germino GG, et al. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J Am Soc Nephrol. 2010; 21: 489-97
PubMed CrossRef
医中誌リンクサービス
30) Serra AL, Poster D, Kistler AD, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010; 363: 820-9
PubMed CrossRef
医中誌リンクサービス
31) Walz G, Budde K, Mannaa M, et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2010; 363: 830-40
PubMed CrossRef
医中誌リンクサービス
32) Perico N, Antiga L, Caroli A, et al. Sirolimus therapy to halt the progression of ADPKD. J Am Soc Nephrol. 2010; 21: 1031-40
PubMed CrossRef
医中誌リンクサービス
33) Sakaguchi M, Isono M, Isshiki K, et al. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun. 2006; 340: 296-301
PubMed CrossRef
医中誌リンクサービス
34) Lloberas N, Cruzado JM, Franquesa M, et al. Mammalian taget of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol. 2006; 17: 1395-404
PubMed CrossRef
医中誌リンクサービス
35) Yang Y, Wang J, Qin L, et al. Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am J Nephrol. 2007; 27: 495-502
PubMed CrossRef
医中誌リンクサービス
36) Mori H, Inoki K, Masutani K, The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun. 2009; 384: 471-5
PubMed CrossRef
医中誌リンクサービス
37) Inoki K, Mori H, Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011; 121: 2181-96
PubMed CrossRef
医中誌リンクサービス
38) Welsh GI, Hale LJ, Eremina V, et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 2010; 12: 329-40
PubMed CrossRef
医中誌リンクサービス
39) Gödel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011; 121: 2197-209
PubMed CrossRef
医中誌リンクサービス
40) Vollenbroker B, George B, Wolfgart M, et al. mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocyte. Am J Physiol Renal Physiol. 2009; 296: F418-26
PubMed
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp