1) Falk RJ, Gross WL, Guillevin L, et al. Granulomatosis with polyangiitis(Wegener's): an alternative name for Wegener's granulomatosis. Arthritis Rheum. 2011; 63: 863-4
|
|
|
2) Fujimoto S, Uezono S, Hisanaga S, et al. Incidence of ANCA-associated primary renal vasculitis in the Miyazaki Prefecture: the first population-based, retrospective, epidemiologic survey in Japan. Clin J Am Soc Nephrol. 2006; 1: 1016
|
|
|
3) Ben-Smith A, Dove SK, Martin A, et al. Antineutrophil cytoplasm autoantibodies from patients with systemic vasculitis activate neutrophils through distinct signaling cascades: comparison with conventional Fcγreceptor ligation. Blood. 2001; 98: 1448
|
|
|
4) Falk RJ, Terrell RS, Charles LA, et al. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A. 1990; 87: 4115
|
|
|
5) Reumaux D, Vossebeld PJ, Roos D, et al. Effect of tumor necrosis factor-induced integrin activation on Fcγreceptor II-mediated signal transduction: relevance for activation of neutrophils by anti-proteinase 3 or anti-myeloperoxidase antibodies. Blood. 1995; 86: 3189
|
|
|
6) Rarok AA, Limburg PC, Kallenberg CG. Neutrophil-activating potential of antineutrophil cytoplasm autoantibodies. J Leukoc Biol. 2003; 74: 3
|
|
|
7) Minoshima S, Arimura Y, Nakabayashi K, et al. Increased release of myelopreoxidase in vitro from neutrophils of patients with myelopreoxidase-specific anti-neutrophil cytoplasmic antibody (MPO-ANCA) related glomerulonephritis. Nephrology. 1997; 3: 527-34
|
|
|
8) Xiao H, Heeringa P, Hu P, et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest. 2002; 110: 955-63
|
|
|
9) Hess C, Sadallah S, Schifferli JA. Induction of neutrophil responsiveness to myeloperoxidase antibodies by their exposure to supernatant of degranulated autologous neutrophils. Blood. 2000; 96: 2822-7
|
|
|
10) Nagao T, Matsumura M, Mabuchi A, et al. Up-regulation of adhesion molecule expression in glomerular endothelial cells by anti-myeloperoxidase antibody. Nephrol Dial Transplant. 2007; 22: 77-87
|
|
|
11) Nagao T, Suzuki K, Utsunomiya K, et al. Direct activation of glomerular endothelial cells by anti-moesin activity of anti-myeloperoxidase antibody. Nephrol Dial Transplant. 2011; 26: 2752-60
|
|
|
12) Fujii A, Tomizawa K, Arimura Y, et al. Epitope analysis of myeloperoxidase-specific anti-neutrophil cytoplasmic antibody (MPO-ANCA) associated glomerulonephritis. Clin Nephrology. 2000; 53: 242-52
|
|
|
13) Suzuki K, Kobayashi S, Yamazaki K, et al. Analysis of risk epitopes of anti-neutrophil antibody MPO-ANCA in vasculitis in Japanese population. Microbiol Immunol. 2007; 51: 1215-20
|
|
|
14) Radford DJ, Savage CO, Nash GB. Treatment of rolling neutrophils with antineutrophil cytoplasmic antibodies causes conversion to firm integrin-mediated adhesion. Arthritis Rheum. 2000; 43: 1337-45
|
|
|
15) Calderwood JW, Williams JM, Morgan MD, et al. ANCA induces β2 integrin and CXC chemokine-dependent neutrophil-endothelial cell interactions that mimic those of highly cytokine-activated endothelium. J Leukoc Biol. 2005; 77: 33-43
|
|
|
16) Little MA, Smyth CL, Yadav R, et al. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo. Blood. 2005; 106: 2050-8
|
|
|
17) Ruth AJ, Kitching AR, Kwan RY, et al. Anti-neutrophil cytoplasmic antibodies and effector CD4+ cells play nonredundant roles in anti-myeloperoxidase crescentic glomerulonephritis. J Am Soc Nephrol. 2006; 17: 1940-9
|
|
|
18) Kuligowski MP, Kwan RY, Lo C, et al. Antimyeloperoxidase antibodies rapidly induce alpha-4-integrin-dependent glomerular neutrophil adhesion. Blood. 2009; 113: 6485-94
|
|
|
19) Hoshino A, Nagao T, Ito-Ihara T, et al. Trafficking of QD-conjugated MPO-ANCA in murine systemic vasculitis and glomerulonephritis model mice. Microbiol Immunol. 2007; 51: 551-66
|
|
|
20) Oharaseki T, Takahashi K, Naoe S, et al. Lethal and severe coronary arteritis in DBA/2 mice induced by fungal pathogen, CAWS, Candida albicans water-soluble fraction. Atherosclerosis. 2006; 186: 310-20
|
|
|
21) Kobayashi S, Fujimoto S, Takahashi K, et al. ANCA-associated vasculitis, large vessel vasculitis and Kawasaki disease in Japan. Kidney Blood Press Res. 2010; 33: 442-55
|
|
|
22) Hoshino A, Nagao T, Nagai-Miura N, et al. MPO-ANCA induces IL-17 production by activated neutrophils in vitro via classical complement pathway-dependent manner. J Autoimmun. 2008; 31: 79-89
|
|
|
23) Kinjoh K, Kyogoku M, Good RA. Genetic selection for crescent formation yields mouse strain with rapidly progressive glomerulonephritis and small vessel vasculitis. Proc Natl Acad Sci U S A. 1993; 90: 3413
|
|
|
24) Ishida-Okawara A, Oharaseki T, Takahashi K, et al. Contribution of myeloperoxidase to coronary artery vasculitis associated with MPO-ANCA production. Inflammation. 2001; 25: 381-7
|
|
|
25) Tomizawa K, Nagao T, Kusunoki R, et al. Reduction of MPO-ANCA epitopes in SCG/Kj mice by 15-Deoxyspergualin treatment restricted by IgG2b associated with crescentic glomerulonephritis. Rheumatology (Oxford). 2010; 49: 1245-56
|
|
|
26) Hamano Y, Tsukamoto K, Abe M, et al. Genetic dissection of vasculitis, myeloperoxidase-specific antineutrophil cytoplasmic antibody production, and related traits in spontaneous crescentic glomerulonephritis-forming/Kinjoh mice. J Immunol. 2006; 176: 3662-73
|
|
|
27) Takei H, Araki A, Watanabe H, et al. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol. 1996; 59: 229
|
|
|
28) Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303: 1532
|
|
|
29) Guimarães-Costa AB, Nascimento MT, Froment GS, et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A. 2009; 106: 6748
|
|
|
30) Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009; 5: e1000639
|
|
|
31) Cogen AL, Yamasaki K, Muto J, et al. Staphylococcus epidermidis antimicrobial δ-toxin (phenol-soluble modulin-γ) cooperates with host antimicrobial peptides to kill group A Streptococcus. PLoS One. 2010; 5: e8557
|
|
|
32) Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007; 176: 231
|
|
|
33) Bianchi M, Hakkim A, Brinkmann V, et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009; 114: 2619
|
|
|
34) Kessenbrock K, Krumbholz M, Schönermarck U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009; 15: 623
|
|
|
35) Lande R, Gregorio J, Facchinetti V, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007; 449: 564
|
|
|
36) Martinelli S, Urosevic M, Daryadel A, et al. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J Biol Chem. 2004; 279: 44123
|
|
|
37) Wilde B, van Paassen P, Damoiseaux J, et al. Dendritic cells in renal biopsies of patients with ANCA-associated vasculitis. Nephrol Dial Transplant. 2009; 24: 2151-6
|
|
|