1) Donadio JV, Grande JP. IgA nephropathy. N Engl J Med. 2002; 347: 738-47
|
|
|
2) 遠藤正之. IgA腎症の疫学・症候・予後. 日腎会誌. 2008; 50: 442-7
|
|
|
3) Narita I, Gejyo F. Pathogenetic significance of aberrant glycosylation of IgA1 in IgA nephropathy. Clin Exp Nephrol. 2008; 12: 332-8
|
|
|
4) Iwase H, Tanaka A, Hiki Y, et al. Estimation of the number of O-linked oligosaccharides per heavy chain of human serum IgA1 by matrix-associated laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of the hinge glycopeptide. J Biochem. 1996; 120: 393-7
|
|
|
5) Hiki Y, Odani H, Takahashi M, et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 2001; 59: 1077-85
|
|
|
6) Tomana M, Matousovic K, Julian BA, et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 1997; 52: 509-16
|
|
|
7) Tomana M, Novak J, Julian BA, et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999; 104: 73-81
|
|
|
8) Kokubo T, Hiki Y, Iwase H, et al. Protective role of IgA1 glycans against IgA1 self-aggregation and adhesion to extracellular matrix proteins. J Am Soc Nephrol. 1998; 9: 2048-54
|
|
|
9) Krajci P, Solberg R, Sandberg M, et al. Molecular cloning of the human transmembrane secretory component (poly-Ig receptor) and its mRNA expression in human tissues. Biochem Biophys Res Commun. 1989; 158: 783-9
|
|
|
10) Leung JCK, Tsang AWL, Chan DTM, et al. Absence of CD89, polymeric immunoglobulin receptor, and asialoglycoprotein receptor on human mesangial cells. J Am Soc Nephrol. 2000; 11: 241-9
|
|
|
11) Pacifico F, Laviola L, Ulianichi L, et al. Differential expression of the asialoglycoprotein receptor in discrete brain areas, in kidney and thyroid. Biochem Biophys Res Commun. 1995; 210: 138-44
|
|
|
12) Gómez-Guerrero C, Duque N, Egido J. Mesangial cells possess an asialoglycoprotein receptor with affinity for human immunoglobulin A. J Am Soc Nephrol. 1998; 9: 568-76
|
|
|
13) Gómez-Guerrero C, González E, Egido J. Evidence for a specific IgA receptor in rat and human mesangial cells. J Immunol. 1993; 151: 7172-81
|
|
|
14) Bagheri N, Chintalacharuvu SR, Emancipator SN. Proinflammatory cytokines regulate FcαR expression by human mesangial cells in vitro. Clin Exp Immunol. 1997; 107: 404-9
|
|
|
15) Diven SC, Caflisch CR, Hammond DK, et al. IgA induced activation of human mesangial cells: independent of FcαR1 (CD89). Kidney Int. 1998; 54: 837-47
|
|
|
16) McDonald KJ, Cameron AJM, Allen JM, et al. Expression of Fc α/μ receptor by human mesangial cells: a candidate receptor for immune complex deposition in IgA nephropathy. Biochem Biophys Res Commun. 2002; 290: 438-42
|
|
|
17) Moura, IC, Centelles MN, Arcos-Fajardo M, et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig) A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med. 2001; 194: 417-25
|
|
|
18) Moura IC, Arcos-Fajardo M, Sadaka C, et al. Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol. 2004; 15: 622-34
|
|
|
19) Moura IC, Arcos-Fajardo M, Gdoura A, et al. Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J Am Soc Nephrol. 2005; 16: 2667-76
|
|
|
20) Kaneko Y, Tsuchida Y, Otsuka T, et al. Integrin α2/β1 as a receptor for galactose-deficient IgA1 in human glomerular mesangial cells of IgA nephropathy patients. (submitted)
|
|
|
21) Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002; 110: 673-87
|
|
|
22) Takagi J, Springer TA. Integrin activation and structural rearrangement. Immunol Rev. 2002; 186: 141-63
|
|
|
23) Luo BH, Carmen CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007; 25: 619-47
|
|
|
24) Kerjaschki D, Ojha PP, Susani M, et al. A β1-integrin receptor for fibronectin in human kidney glomeruli. Am J Pathol. 1989; 134: 481-9
|
|
|
25) Simon EE, McDonald JA. Extracellular matrix receptors in the kidney cortex. Am J Physiol. 1990; 259: F783-91
|
|
|
26) Suzuki H, Fan R, Zhang Z, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009; 119: 1668-77
|
|
|
27) Nachman PH, Jennette JC, Falk RJ. Primary glomerular disease. In: Brenner BM. editor. The Kidney. 8th ed. Philadelphia PA: Saunders Elsevier; 2008. p.1024-32
|
|
|
28) Launay P, Grossetete B, Acros-Fajardo, M, et al. Fcα receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger's disease): evidence for pathogenic soluble receptor-IgA complexes in patients and CD89 transgenic mice. J Exp Med. 2000; 191: 1999-2009
|
|
|
29) Baldree LA, Wyatt RJ, Julian BA, et al. Immunoglobulin A-fibronectin aggregate levels in children and adults with immunoglobulin A nephropathy. Am J Kidney Dis. 1993; 22: 1-4
|
|
|
30) Zheng F, Kundu GC, Zhang Z, et al. Uteroglobin is essential in preventing immunoglobulin A nephropathy in mice. Nat Med. 1999; 5: 1018-25
|
|
|
31) Coppo R, Chiesa M, Cirina P, et al. In human IgA nephropathy uteroglobin does not play the role inferred from transgenic mice. Am J Kidney Dis. 2002; 40: 495-503
|
|
|