1) Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002; 23: 447-52
|
|
|
2) Wu XW, Lee CC, Muzny DM, et al. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A. 1989; 86: 9412-6
|
|
|
3) 中村 徹. 高尿酸血症の原因(尿酸排泄低下), 高尿酸血症・痛風. In: 鎌谷直之, 編. 新しい診断と治療のABC37. 東京; 最新医学社; 2006. p.34-47
|
|
|
4) Hediger MA, Johnson RJ, Miyazaki H, et al. Molecular physiology of urate transport. Physiology (Bethesda). 2005; 20: 125-33
|
|
|
5) Kamatani Y, Matsuda K, Okada Y, et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet. 2010; 42: 210-5
|
|
|
6) Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28, 141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009; 5: e1000504
|
|
|
7) Dehghan A, Köttgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008; 372: 1953-61
|
|
|
8) Yang Q, Köttgen A, Dehghan A, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010; 3: 523-30
|
|
|
9) Li S, Sanna S, Maschio A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007; 3: e194
|
|
|
10) Cummings N, Dyer TD, Kotea N, et al. Genome-wide scan identifies a quantitative trait locus at 4p15. 3 for serum urate. Eur J Hum Genet. 2010; 18: 1243-7
|
|
|
11) Charles BA, Shriner D, Doumatey A, et al. A genome-wide association study of serum uric acid in African Americans. BMC Med Genomics. 2011; 4: 17
|
|
|
12) Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008; 283: 26834-8
|
|
|
13) Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008; 3: 744-51
|
|
|
14) Woodward OM, Köttgen A, Coresh J, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009; 106: 10338-42
|
|
|
15) Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med. 2009; 1: 5ra11
|
|
|
16) Jutabha P, Anzai N, Kitamura K, et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J Biol Chem. 2010; 285: 35123-32
|
|
|
17) Anzai N, Miyazaki H, Noshiro R, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem. 2004; 279: 45942-50
|
|
|
18) Ichida K, Hosoyamada M, Hisatome I, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004; 15: 164-73
|
|
|
19) Roch-Ramel F, Guisan B, Schild L, et al. Indirect coupling of urate and p-aminohippurate transport to sodium in human brush-border membrane vesicles. Am J Physiol. 1996; 270: F61-8
|
|
|
20) Takeda Y, Abe A, Nakanishi S, et al. Two cases of nephrotic syndrome (NS)-induced acute kidney injury (AKI) associated with renal hypouricemia. Clin Nephrol. 2011; 76: 78-82
|
|
|
21) Eraly SA, Vallon V, Rieg T, et al. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol Genomics. 2008; 33: 180-92
|
|
|
22) Hosoyamada M, Takiue Y, Morisaki H, et al. Establishment and analysis of SLC22A12 (URAT1) knockout mouse. Nucleosides Nucleotides Nucleic Acids. 2010; 29: 314-20
|
|
|
23) 塚田 愛, 木村 徹, Jutabha P, 他. 尿酸トランスポーターURAT1トランスジェニックマウスにおける尿酸の体内動態. 痛風と核酸代謝. 2010; 34: 171-8
|
|
|
24) 木村 徹, 安西尚彦, Jutabha P, 他. 新規尿酸排出トランスポーターURATv1の尿酸輸送特性の解析. 痛風と核酸代謝. 2009; 33: 177-82
|
|
|
25) Preitner F, Bonny O, Laverrière A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci U S A. 2009; 106: 15501-6
|
|
|
26) Cha SH, Sekine T, Kusuhara H, et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem. 2000; 275: 4507-12
|
|
|
27) 木村弘章, 市田公美, 細山田真, 他. 近位尿細管管腔膜側に存在するヒト有機陰イオントランスポーターhOAT4(human Organic Anion Transporter 4)における尿酸輸送の解析. 痛風と核酸代謝. 2001; 25: 113-20
|
|
|
28) Ekaratanawong S, Anzai N, Jutabha P, et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci. 2004; 94: 297-304
|
|
|
29) Hagos Y, Stein D, Ugele B, et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007; 18: 430-9
|
|
|
30) Sato M, Iwanaga T, Mamada H, et al. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm Res. 2008; 25: 639-46
|
|
|
31) Nishiwaki T, Daigo Y, Tamari M, et al. Molecular cloning, mapping, and characterization of two novel human genes, ORCTL3 and ORCTL4, bearing homology to organic-cation transporters. Cytogenet Cell Genet. 1998; 83: 251-5
|
|
|
32) Bahn A, Hagos Y, Reuter S, et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem. 2008; 283: 16332-41
|
|
|
33) Thangaraju M, Ananth S, Martin PM, et al. c/ebpdelta Null mouse as a model for the double knock-out of slc5a8 and slc5a12 in kidney. J Biol Chem. 2006; 281: 26769-73
|
|
|