医中誌リンクサービス


文献リスト

1) McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition. 1989; 5: 155-71; discussion 72
PubMed
医中誌リンクサービス
2) Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol. 2005; 6: 298-305
PubMed CrossRef
医中誌リンクサービス
3) Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009; 325: 201-4
PubMed CrossRef
医中誌リンクサービス
4) Fontana L, Meyer TE, Klein S, et al. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A. 2004; 101: 6659-63
PubMed CrossRef
医中誌リンクサービス
5) Narasimhan SD, Yen K, Tissenbaum HA. Converging pathways in lifespan regulation. Curr Biol. 2009; 19: R657-66
PubMed CrossRef
医中誌リンクサービス
6) Imai S, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci. 2010; 31: 212-20
PubMed CrossRef
医中誌リンクサービス
7) Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000; 403: 795-800
PubMed CrossRef
医中誌リンクサービス
8) Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005; 2: 105-17
PubMed CrossRef
医中誌リンクサービス
9) Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006; 4: e31
PubMed CrossRef
医中誌リンクサービス
10) Lee JH, Song MY, Song EK, et al. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes. 2009; 58: 344-51
PubMed
医中誌リンクサービス
11) Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005; 434: 113-8
PubMed CrossRef
医中誌リンクサービス
12) Nie Y, Erion DM, Yuan Z, et al. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell Biol. 2009; 11: 492-500
PubMed CrossRef
医中誌リンクサービス
13) Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008; 456: 269-73
PubMed CrossRef
医中誌リンクサービス
14) Kemper JK, Xiao Z, Ponugoti B, et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 2009; 10: 392-404
PubMed CrossRef
医中誌リンクサービス
15) Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004; 429: 771-6
PubMed CrossRef
医中誌リンクサービス
16) Banks AS, Kon N, Knight C, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008; 8: 333-41
PubMed CrossRef
医中誌リンクサービス
17) Chau MD, Gao J, Yang Q, et al. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci U S A. 2010; 107: 12553-8
PubMed CrossRef
医中誌リンクサービス
18) Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. Embo J. 2007; 26: 1913-23
PubMed CrossRef
医中誌リンクサービス
19) Iwabu M, Yamauchi T, Okada-Iwabu M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature. 2010; 464: 1313-9
PubMed CrossRef
医中誌リンクサービス
20) Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008; 134: 317-28
PubMed CrossRef
医中誌リンクサービス
21) Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008; 134: 329-40
PubMed CrossRef
医中誌リンクサービス
22) Ramadori G, Fujikawa T, Fukuda M, et al. SIRT1 Deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 2010; 12: 78-87
PubMed CrossRef
医中誌リンクサービス
23) Satoh A, Brace CS, Ben-Josef G, et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci. 2010; 30: 10220-32
PubMed CrossRef
医中誌リンクサービス
24) Cakir I, Perello M, Lansari O, et al. Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS One. 2009; 4: e8322
PubMed CrossRef
医中誌リンクサービス
25) Sasaki T, Kim HJ, Kobayashi M, et al. Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology. 2010; 151: 2556-66
PubMed CrossRef
医中誌リンクサービス
26) Cohen DE, Supinski AM, Bonkowski MS, et al. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev. 2009; 23: 2812-7
PubMed CrossRef
医中誌リンクサービス
27) Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007; 6: 759-67
PubMed CrossRef
医中誌リンクサービス
28) Chen D, Steele AD, Lindquist S, et al. Increase in activity during calorie restriction requires Sirt1. Science. 2005; 310: 1641
PubMed CrossRef
医中誌リンクサービス
29) Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010; 120: 1043-55
PubMed CrossRef
医中誌リンクサービス
30) Herranz D, Serrano M. Impact of Sirt1 on mammalian aging. Aging (Albany NY). 2010; 2: 315-6
PubMed
医中誌リンクサービス
31) Chen D, Bruno J, Easlon E, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008; 22: 1753-7
PubMed CrossRef
医中誌リンクサービス
32) Pfluger PT, Herranz D, Velasco-Miguel S, et al. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A. 2008; 105: 9793-8
PubMed CrossRef
医中誌リンクサービス
33) Ramsey KM, Mills KF, Satoh A, et al. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell. 2008; 7: 78-88
PubMed CrossRef
医中誌リンクサービス
34) Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008; 451: 583-6
PubMed CrossRef
医中誌リンクサービス
35) Zhao W, Kruse JP, Tang Y, et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008; 451: 587-90
PubMed CrossRef
医中誌リンクサービス
36) Escande C, Chini CC, Nin V, et al. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. J Clin Invest. 2010; 120: 545-58
PubMed CrossRef
医中誌リンクサービス
37) Xu F, Gao Z, Zhang J, et al. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation. Endocrinology. 2010; 151: 2504-14
PubMed CrossRef
医中誌リンクサービス
38) Purushotham A, Schug TT, Xu Q, et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009; 9: 327-38
PubMed CrossRef
医中誌リンクサービス
39) Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003; 425: 191-6
PubMed CrossRef
医中誌リンクサービス
40) Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004; 430: 686-9
PubMed CrossRef
医中誌リンクサービス
41) Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444: 337-42
PubMed CrossRef
医中誌リンクサービス
42) Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006; 127: 1109-22
PubMed CrossRef
医中誌リンクサービス
43) Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007; 450: 712-6
PubMed CrossRef
医中誌リンクサービス
44) Feige JN, Lagouge M, Canto C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008; 8: 347-58
PubMed CrossRef
医中誌リンクサービス
45) Yamazaki Y, Usui I, Kanatani Y, et al. Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am J Physiol Endocrinol Metab. 2009 sep 1. [Epub ahead of print]
医中誌リンクサービス
46) Pearson KJ, Baur JA, Lewis KN, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008; 8: 157-68
PubMed CrossRef
医中誌リンクサービス
47) Ramadori G, Gautron L, Fujikawa T, et al. Central administration of resveratrol improves diet-induced diabetes. Endocrinology. 2009; 150: 5326-33
PubMed CrossRef
医中誌リンクサービス
48) Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem. 2010; 285: 9100-13
PubMed CrossRef
医中誌リンクサービス
49) Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. Embo J. 2007; 26: 3169-79
PubMed
医中誌リンクサービス
50) Schmidt C. GSK/Sirtris compounds dogged by assay artifacts. Nat Biotechnol. 2010; 28: 185-6
PubMed CrossRef
医中誌リンクサービス
51) Ledford H. Ageing: Much ado about ageing. Nature. 2010; 464: 480-1
PubMed CrossRef
医中誌リンクサービス
52) Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005; 280: 17187-95
PubMed CrossRef
医中誌リンクサービス
53) Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010; 285: 8340-51
PubMed CrossRef
医中誌リンクサービス
54) Um JH, Park SJ, Kang H, et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes. 2010; 59: 554-63
PubMed CrossRef
医中誌リンクサービス
55) Revollo JR, Grimm AA, Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol. 2007; 23: 164-70
PubMed CrossRef
医中誌リンクサービス
56) Imai S. Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases. Curr Pharm Des. 2009; 15: 20-8
PubMed CrossRef
医中誌リンクサービス
57) Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004; 279: 50754-63
PubMed CrossRef
医中誌リンクサービス
58) van der Veer E, Ho C, O'Neil C, et al. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem. 2007; 282: 10841-5
PubMed CrossRef
医中誌リンクサービス
59) Yang H, Yang T, Baur JA, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007; 130: 1095-107
PubMed CrossRef
医中誌リンクサービス
60) Revollo JR, Korner A, Mills KF, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007; 6: 363-75
PubMed CrossRef
医中誌リンクサービス
61) Dahl TB, Haukeland JW, Yndestad A, et al. Intracellular nicotinamide phosphoribosyltransferase protects against hepatocyte apoptosis and is down-regulated in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2010; 95: 3039-47
PubMed CrossRef
医中誌リンクサービス
62) Sun Q, Li L, Li R, et al. Overexpression of visfatin/PBEF/Nampt alters whole-body insulin sensitivity and lipid profile in rats. Ann Med. 2009; 41: 311-20
PubMed CrossRef
医中誌リンクサービス
63) Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009; 324: 651-4
PubMed CrossRef
医中誌リンクサービス
64) Nakahata Y, Sahar S, Astarita G, et al. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009; 324: 654-7
PubMed CrossRef
医中誌リンクサービス
65) Imai S. “Clocks" in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acta. 2010; 1804: 1584-90
PubMed
医中誌リンクサービス
66) Imai S. The NAD World: a new systemic regulatory network for metabolism and aging--Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys. 2009; 53: 65-74
PubMed CrossRef
医中誌リンクサービス
67) Imai S. From heterochromatin islands to the NAD World: a hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis. Biochim Biophys Acta. 2009; 1790: 997-1004
PubMed
医中誌リンクサービス
68) Imai S. A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacol Res. 2010; 62: 42-7
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp