1) Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000; 100: 197-207
|
|
|
2) Shi Y, Yadav VK, Suda N, et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci U S A. 2008; 105: 20529-33
|
|
|
3) Takeda S. Central control of bone remodeling. Biochem Biophys Res Commun. 2005; 328: 697-9
|
|
|
4) Fu L, Patel MS, Bradley A, et al. The molecular clock mediates leptin-regulated bone formation. Cell. 2005; 122: 803-15
|
|
|
5) Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005; 434: 514-20
|
|
|
6) Shi Y, Oury F, Yadav VK, et al. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab. 2010; 11: 231-8
|
|
|
7) Dhillon H, Zigman JM, Ye C, et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron. 2006; 49: 191-203
|
|
|
8) Balthasar N, Coppari R, McMinn J, et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron. 2004; 42: 983-91
|
|
|
9) Hosoi T, Kawagishi T, Okuma Y, et al. Brain stem is a direct target for leptin's action in the central nervous system. Endocrinology. 2002; 143: 3498-504
|
|
|
10) Yadav VK, Oury F, Suda N, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009; 138: 976-89
|
|
|
11) Yadav VK, Ryu JH, Suda N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell. 2008; 135: 825-37
|
|
|
12) Yadav VK, Balaji S, Suresh PS, et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med. 2010; 16: 308-12
|
|
|
13) Modder UI, Achenbach SJ, Amin S, et al. Relation of serum serotonin levels to bone density and structural parameters in women. J Bone Miner Res. 2010; 25: 415-22
|
|
|
14) Baldock PA, Allison SJ, Lundberg P, et al. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biol Chem. 2007; 282: 19092-102
|
|
|
15) Baldock PA, Sainsbury A, Couzens M, et al. Hypothalamic Y2 receptors regulate bone formation. J Clin Invest. 2002; 109: 915-21
|
|
|
16) Lundberg P, Allison SJ, Lee NJ, et al. Greater bone formation of Y2 knockout mice is associated with increased osteoprogenitor numbers and altered Y1 receptor expression. J Biol Chem. 2007; 282: 19082-91
|
|
|
17) Elefteriou F, Takeda S, Liu X, et al. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass. Endocrinology. 2003; 144: 3842-7
|
|
|
18) Goodrich L, Yerges-Armstrong L, Miljkovic I, et al. Molecular variation in neuropeptide Y and bone mineral density among men of African ancestry. Calcified Tissue International. 2009; 85: 507-13
|
|
|
19) Cawley NX, Yanik T, Woronowicz A, et al. Obese carboxypeptidase E knockout mice exhibit multiple defects in peptide hormone processing contributing to low bone mineral density. Am J Physiol Endocrinol Metab. 2010; 299: E189-97
|
|
|
20) Guerardel A, Tanko LB, Boutin P, et al. Obesity susceptibility CART gene polymorphism contributes to bone remodeling in postmenopausal women. Osteoporos Int. 2006; 17: 156-7
|
|
|
21) Ahn JD, Dubern B, Lubrano-Berthelier C, et al. Cart overexpression is the only identifiable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology. 2006; 147: 3196-202
|
|
|
22) Hanada R, Teranishi H, Pearson JT, et al. Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nat Med. 2004; 10: 1067-73
|
|
|
23) Sato S, Hanada R, Kimura A, et al. Central control of bone remodeling by neuromedin U. Nat Med. 2007; 13: 1234-40
|
|
|
24) Idris AI, van't Hof RJ, Greig IR, et al. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med. 2005; 11: 774-9
|
|
|
25) Tam J, Trembovler V, Di Marzo V, et al. The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. Faseb J. 2008; 22: 285-94
|
|
|
26) Sun L, Peng Y, Sharrow AC, et al. FSH directly regulates bone mass. Cell. 2006; 125: 247-60
|
|
|
27) Abe E, Marians RC, Yu W, et al. TSH is a negative regulator of skeletal remodeling. Cell. 2003; 115: 151-62
|
|
|
28) Tamma R, Colaianni G, Zhu LL, et al. Oxytocin is an anabolic bone hormone. Proc Natl Acad Sci U S A. 2009; 106: 7149-54
|
|
|
29) Zaidi M, Sun L, Robinson LJ, et al. ACTH protects against glucocorticoid-induced osteonecrosis of bone. Proc Natl Acad Sci U S A. 2010; 107: 8782-7
|
|
|
30) Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007; 130: 456-69
|
|
|
31) Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009; 94: 45-9
|
|
|
32) Winhofer Y, Handisurya A, Tura A, et al. Osteocalcin is related to enhanced insulin secretion in gestational diabetes mellitus. Diabetes Care. 2010; 33: 139-43
|
|
|
33) Levinger I, Zebaze R, Jerums G, et al. The effect of acute exercise on undercarboxylated osteocalcin in obese men. Osteoporosis Int. 2010 Aug 24. [Epud ahead of print]
|
|
|
34) Hinoi E, Gao N, Jung DY, et al. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol. 2008; 183: 1235-42
|
|
|
35) Yoshizawa T, Hinoi E, Jung DY, et al. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest. 2009; 119: 2807-17
|
|
|
36) Rached M-T, Kode A, Silva BC, et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest. 2010; 120: 357-68
|
|
|
37) Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010; 142: 296-308
|
|
|
38) Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010; 142: 309-19,
|
|
|