1) Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996; 3: 213-9
|
|
|
2) Iso H, Naito Y, Sato S, et al. Serum triglycerides and risk of coronary heart disease among Japanese men and women. Am J Epidemiol. 2001; 153: 490-9
|
|
|
3) Kugiyama K, Doi H, Takazoe K, et al. Remnant lipoprotein levels in fasting serum predict coronary events in patients with coronary artery disease. Circulation. 1999; 99: 2858-60
|
|
|
4) McNamara JR, Shah PK, Nakajima K, et al. Remnant-like particle (RLP) cholesterol is an independent cardiovascular disease risk factor in women: results from the Framingham Heart Study. Atherosclerosis. 2001; 154: 229-36
|
|
|
5) Imke C, Rodriguez BL, Grove JS, et al. Are remnant-like particles independent predictors of coronary heart disease incidence? The Honolulu Heart study. Arterioscler Thromb Vasc Biol. 2005; 25: 1718-22
|
|
|
6) Fujioka Y and Ishikawa Y. Remnant lipoprotein as strong key particles to atherogenesis. J Atheroscler Thromb. 2009; 16: 145-54
|
|
|
7) Miyauchi K, Kayahara N, Ishigami M, et al. Development of a homogeneous assay to measure remnant lipoprotein cholesterol. Clin Chem. 2007; 53: 2128-35
|
|
|
8) Uchida Y, Kurano Y, Ito S. Establishment of monoclonal antibody against human Apo B-48 and measurement of Apo B-48 in serum by ELISA method. J Clin Lab Anal. 1998; 12: 289-92
|
|
|
9) Sakai N, Uchida Y, Ohashi K, et al. Measurement of fasting serum apoB-48 levels in normolipidemic and hyperlipidemic subjects by ELISA. J Lipid Res. 2003; 44: 1256-62
|
|
|
10) Sakai N, Sugimoto T, Tsujii K, et al. Fasting apolipoprotein B48 levels measured by a novel ELISA are a simple and useful marker for postprandial hyperlipidemia and predict coronary heart disease. Circulation. 2004; 17 Suppl 3: III–183
|
|
|
11) Proctor SD, Vine DF, Mamo JC. Arterial permeability and efflux of apolipoprotein B-containing lipoproteins assessed by in situ perfusion and three-dimensional quantitative confocal microscopy. Arterioscler Thromb Vasc Biol. 2004; 24: 2162–67
|
|
|
12) Proctor SD, Mamo JC. Intimal retention of cholesterol derived from apolipoprotein B100- and apolipoprotein B48-containing lipoproteins in carotid arteries of Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol. 2003; 23: 1595–600
|
|
|
13) Pal S, Semorine K, Watts GF, et al. Identification of lipoproteins of intestinal origin in human atherosclerotic plaque. Clin Chem Lab Med. 2003; 41: 792–5
|
|
|
14) Tanimura K, et al. Association of serum apolipoprotein B48 level with the presence of carotid plaque in type 2 diabetes mellitus. Diabetes Res Clin Pract. 2008; 81: 338-44
|
|
|
15) Hayashi T, Hirano T, Taira T, et al. Remarkable increase of apolipoprotein B48 level in diabetic patients with end-stage renal disease. Atherosclerosis. 2008; 197: 154-8
|
|
|
16) Valdivielso P, Puerta S, Rioja J, et al. Postprandial apolipoprotein B48 is associated with asymptomatic peripheral arterial disease: a study in patients with type 2 diabetes and controls. Clin Chim Acta. 2010; 411: 433-7
|
|
|
17) Kinoshita M, Ohnishi H, Maeda T, et al. Increased serum apolipoprotein B48 concentration in patients with metabolic syndrome. J Atheroscler Thromb. 2009; 16: 517-22
|
|
|
18) Chan DC, Watts GF, Ng TW, et al. Adiponectin and other adipocytokines as predictors of markers of triglyceride-rich lipoprotein metabolism. Clin Chem. 2005; 51: 578-85
|
|
|
19) Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation. 1979; 60: 473–85
|
|
|
20) Ginsberg HN, Jones J, Blaner WS, et al. Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercised-induced myodcardial ischemia in middle-aged men and women. Arterioscler Thromb Vasc Biol. 1995; 15: 1829-38
|
|
|
21) Boquist S, Ruotolo G, Tang R, et al. Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. Circulation. 1999; 100: 723-8
|
|
|
22) Uiterwaal CS, Grobbee DE, Witteman JC, et al. Postprandial triglyceride response in young adult men and familial risk for coronary atherosclerosis. Ann Intern Med. 1994; 121: 576-83
|
|
|
23) Altmann SW, Davis HR Jr, Zhu LJ, et al. Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science. 2004; 303: 1201-4
|
|
|
24) Garcia-Calvo M, Lisnock J, Bull HG, et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci U S A. 2005; 102: 8132-7
|
|
|
25) Lally S, Owens D, Tomkin GH. Genes that affect cholesterol synthesis, cholesterol absorption, and chylomicron assembly: the relationship between the liver and intestine in control and streptozotosin diabetic rats. Metabolism. 2007; 56: 430-8
|
|
|
26) Lally S, Owens D, Tomkin GH. The different effect of pioglitazone as compared to insulin on expression of hepatic and intestinal genes regulating post-prandial lipoproteins in diabetes. Atherosclerosis. 2007; 193: 343-51
|
|
|
27) Jiao S, Matsuzawa Y, Matsubara K, et al. Increased activity of intestinal acyl-CoA: cholesterol acyltransferase in rats with streptozocin-induced diabetes and restoration by insulin supplementation. Diabetes. 1988; 37: 342-6
|
|
|
28) Jiao S, Matsuzawa Y, Matsubara K, et al. Abnormalities of plasma lipoproteins in a new genetically obese rat with non-insulin-dependent diabetes mellitus (Wistar fatty rat). Int J Obes. 1991; 15: 487-95
|
|
|
29) Jiao S, Moberly JB, Cole TG, et al. Decreased activity of acyl-CoA: cholesterol acyltransferase by insulin in human intestinal cell line Caco-2. Diabetes. 1989; 38: 604-9
|
|
|
30) Lally S, Tan CY, Owens D, et al. Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein. Diabetologia. 2006; 49: 1008-16
|
|
|
31) Kern PA, Ranganathan S, Li S, et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001; 280: E745-51
|
|
|
32) Ishigami M, Yamashita S, Sakai N, et al. Atorvastatin markedly improves type III hyperlipoproteinemia in association with reduction of both exogenous and endogenous apolipoprotein B-containing lipoproteins. Atherosclerosis. 2003; 168: 359-66
|
|
|
33) Kolovou GD, Anagnostopoulou KK, Daskalopoulou SS, et al. Clinical relevance of postprandial lipaemia. Curr Med Chem. 2005; 12: 1931-45
|
|
|
34) Karpe F. Postprandial lipemia-effect of lipid-lowering drugs. Atheroscler Suppl. 2002; 3: 41-6
|
|
|
35) Schaefer EJ, McNamara JR, Tayler T, et al. Comparisons of effects of statins (atorvastatin, fluvastatin, lovastatin, pravastatin and simvastatin) on fasting and postprandial lipoproteins in patients with coronary heart disease versus control subjects. Am J Cardiol. 2004; 93: 31-9
|
|
|
36) Parhofer KG, Laubach E, Barrett PH, et al. Effect of atorvastatin on postprandial lipoprotein metabolism in hypertriglyceridemic patients. J Lipid Res. 2003; 44: 1192-8
|
|
|
37) Ooi TC, Cousins M, Ooi DS, et al. Effect of fibrates on postprandial remnant-like particles in patients with combined hyperlipidemia. Atherosclerosis. 2004; 172: 375-82
|
|
|
38) Masuda D, Hirano K, Oku H, et al. Chylomicron remnants are increased in the postprandial state in CD36 deficiency. J Lipid Res. 2009; 50: 999-1011
|
|
|
39) Sandoval JC, Nakagawa-Toyama Y, Masuda D, et al. Fenofibrate reduces postprandial hypertriglyceridemia in CD36 knockout mice. J Atheroscler Thromb. 2010; 17: 610-8
|
|
|
40) Altmann SW, Davis HR Jr, Zhu LJ, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004: 303: 1201–4
|
|
|
41) Davis HR Jr, Compton DS, Hoos L, et al. Ezetimibe, a potent cholesterol absorption inhibitor, inhibits the development of atherosclerosis in apoE knockout mice. Arterioscler Thromb Vasc Biol. 2001; 21: 2032–8
|
|
|
42) Masuda D, Nakagawa-Toyama Y, Nakatani K, et al. Ezetimibe improves postprandial hyperlipidaemia in patients with type IIb hyperlipidaemia. Eur J Clin Invest. 2009; 39: 689-98
|
|
|
43) Sandoval JC, Nakagawa-Toyama Y, Masuda D, et al. Molecular mechanisms of ezetimibe-induced attenuation of postprandial hypertriglyceridemia. J Atheroscler Thromb. 2010; 17: 914-24
|
|
|