1) Brown MS, Goldstein JL. Familial hypercholesterolemia: A genetic defect in the low-density lipoprotein receptor. N Engl J Med. 1976; 294: 1386-90
|
|
|
2) Noguchi T, Katsuda S, Kawashiri MA, et al. The E32K variant of PCSK9 exacerbates the phenotype of familial hypercholesterolemia by increasing PCSK9 function and concentration in the circulation. Atherosclerosis. 2010; 210: 166-72
|
|
|
3) Miyake Y, Kimura R, Kokubo Y, et al. Genetic variants in PCSK9 in the Japanese population: rare genetic variants in PCSK9 might collectively contribute to plasma LDL cholesterol levels in the general population. Atherosclerosis. 2008; 196: 29-36
|
|
|
4) Abifadel M, Rabès JP, Jambart S, et al. The molecular basis of familial hypercholesterolemia in Lebanon: spectrum of LDLR mutations and role of PCSK9 as a modifier gene. Hum Mutat. 2009; 30: E682-91
|
|
|
5) Strøm TB, Holla ØL, Cameron J, et al. Loss-of-function mutation R46L in the PCSK9 gene has little impact on the levels of total serum cholesterol in familial hypercholesterolemia heterozygotes. Clin Chim Acta. 2010; 411: 229-33
|
|
|
6) Chmara M, Wasag B, Zuk M, et al. Molecular characterization of Polish patients with familial hypercholesterolemia: novel and recurrent LDLR mutations. J Appl Genet. 2010; 51: 95-106
|
|
|
7) Nohara A, Yagi K, Inazu A, et al. Absence of familial defective apolipoprotein B-100 in Japanese patients with familial hypercholesterolaemia. Lancet. 1995; 345: 1438
|
|
|
8) Harada-Shiba M, Takagi A, MiyamotoY, et al. Clinical features and genetic analysis of autosomal recessive hypercholesterolemia. J Clin Endocrinol Metab. 2003; 88: 2541-7
|
|
|
9) Garcia, CK, Wilund K, Arca M, et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science. 2001; 292: 1394-8
|
|
|
10) Tada H, Kawashiri MA, Noguchi T, et al. Clinical impact of heterozygous carrier of autosomal recessive hypercholesterolemia on asymptomatic hyperlipidemic patients: evidence from familial gene analysis. 81st American Heart Association 2008 Scientific Sessions. Dec. 8-12, 2008
|
|
|
11) Pajukanta P, Nuotio I, Terwilliger JD, et al. Linkage of familial combined hyperlipidaemia to chromosome 1q21-q23. Nat Genet. 1998; 18: 369-73
|
|
|
12) Pajukanta P, Lilja HE, Sinsheimer JS, et al. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat Genet. 2004; 36: 371-6
|
|
|
13) Plaisier CL, Horvath S, Huertas-Vazquez A, et al. A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet. 2009; 5: e1000642
|
|
|
14) Huertas-Vazquez A, Plaisier CL, Geng R, et al. A nonsynonymous SNP within PCDH15 is associated with lipid traits in familial combined hyperlipidemia. Hum Genet. 2010; 127: 83-9
|
|
|
15) Nohara A, Kawashiri MA, Claudel T, et al. High frequency of a retinoid X receptor gamma gene variant in familial combined hyperlipidemia that associates with atherogenic dyslipidemia. Arterioscler Thromb Vasc Biol. 2007; 27: 923-8
|
|
|
16) Koike T, Kitajima S, Yu Y, et al. Expression of human apoAII in transgenic rabbits leads to dyslipidemia. A new model for combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 2009; 29: 2047-53
|
|
|
17) Henneman P, van der Sman-de Beer F, Moghaddam PH, et al. The expression of type III hyperlipoproteinemia: involvement of lipolysis genes. Eur J Hum Genet. 2009; 17: 620-8
|
|
|
18) Gotoda T, Yamada N, Kawamura M, et al. Heterogeneous mutations in the human lipoprotein lipase gene in patients with familial lipoprotein lipase deficiency. J Clin Invest. 1991; 88: 1856-64
|
|
|
19) Takagi A, Ikeda Y, Tsutsumi Z, et al. Molecular studies on primary lipoprotein lipase (LPL) deficiency. One base deletion (G916) in exon 5 of LPL gene causes no detectable LPL protein due to the absence of LPL mRNA transcript. J Clin Invest. 1992; 89: 581-91
|
|
|
20) Kobayashi J, Sasaki N, Tashiro J, et al. A missense mutation (Ala334-->Thr) in exon 7 of the lipoprotein lipase gene in a case with type I hyperlipidemia. Biochem Biophys Res Commun. 1993; 191: 1046-54
|
|
|
21) Rahalkar AR, Giffen F, Har B, et al. Novel LPL mutations associated with lipoprotein lipase deficiency: two case reports and a literature review. Can J Physiol Pharmacol. 2009; 87: 151-60
|
|
|
22) 白井厚治, 大平征宏, 村野武義. 高度高中性脂肪血症50例の原因検索. 原発性高脂血症に関する調査研究. 平成21年度総括研究報告書. p.42-6
|
|
|
23) Wang J, Ban MR, Zou GY, et al. Polygenic determinants of severe hypertriglyceridemia. Hum Mol Genet. 2008; 17: 2894-9
|
|
|
24) Attie AD. High-maintenance proteins and hypertriglyceridemia. Nat Genet. 2007; 39: 1424-5
|
|
|
25) Paglialunga S, Julien P, Tahiri Y, et al. Lipoprotein lipase deficiency is associated with elevated acylation stimulating protein plasma levels. J Lipid Res. 2009; 50: 1109-19
|
|
|
26) Baass A, Wassef H, Tremblay M, et al. Characterization of a new LCAT mutation causing familial LCAT deficiency (FLD) and the role of APOE as a modifier gene of the FLD phenotype. Atherosclerosis. 2009; 207: 452-7
|
|
|
27) Park CW, Lim MH, Youn DY, et al. Two novel frame shift mutations in lecithin: cholesterol acyltransferase (LCAT) gene associated with a familial LCAT deficiency phenotype. Atherosclerosis. 2009; 206: 346-8
|
|
|
28) Cefalù AB, Noto D, Magnolo L, et al. Novel mutations of CETP gene in Italian subjects with hyperalphalipoproteinemia. Atherosclerosis. 2009; 204: 202-7
|
|
|
29) Calabresi L, Nilsson P, Pinotti E, et al. A novel homozygous mutation in CETP gene as a cause of CETP deficiency in a Caucasian kindred. Atherosclerosis. 2009; 205: 506-11
|
|
|
30) Zhong S, Magnolo AL, Sundaram M, et al. Nonsynonymous mutations within APOB in human familial hypobetalipoproteinemia: evidence for feedback inhibition of lipogenesis and postendoplasmic reticulum degradation of apolipoprotein B. J Biol Chem. 2010; 285: 6453-64
|
|
|
31) Katsuda S, Kawashiri MA, Inazu A, et al. Apolipoprotein B gene mutations and fatty liver in Japanese hypobetalipoproteinemia. Clin Chim Acta. 2009; 399: 64-8
|
|
|
32) Cariou B, Ouguerram K, Zaïr Y, et al. PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol. 2009; 29: 2191-7
|
|
|
33) Najah M, Di Leo E, Awatef J, et al. Identification of patients with abetalipoproteinemia and homozygous familial hypobetalipoproteinemia in Tunisia. Clin Chim Acta. 2009; 401: 51-6
|
|
|
34) Maekawa M, Kikuchi J, Kotani K, et al. A novel missense mutation of ABCA1 in transmembrane alpha-helix in a Japanese patient with Tangier disease. Atherosclerosis. 2009; 206: 216-22
|
|
|
35) Bocchi L, Pisciotta L, Fasano T, et al. Multiple abnormally spliced ABCA1 mRNAs caused by a novel splice site mutation of ABCA1 gene in a patient with Tangier disease. Clin Chim Acta. 2010; 411: 524-30
|
|
|
36) Cameron J, Ranheim T, Halvorsen B, et al. Tangier disease caused by compound heterozygosity for ABCA1 mutations R282X and Y1532C. Atherosclerosis. 2010; 209: 163-6
|
|
|
37) Hooper AJ, Robertson K, Ng L, et al. A novel ABCA1 nonsense mutation, R1270X, in Tangier disease associated with an unrecognised bleeding tendency. Clin Chim Acta. 2009; 409: 136-9
|
|
|
38) Koseki M, Matsuyama A, Nakatani K, et al. Impaired insulin secretion in four Tangier disease patients with ABCA1 mutations. J Atheroscler Thromb. 2009; 16: 292-6
|
|
|
39) Nozue T, Higashikata T, Inazu A, et al. Identification of a novel missense mutation in the sterol 27-hydroxylase gene in two Japanese patients with cerebrotendinous xanthomatosis. Intern Med. 2010; 49: 1127-31
|
|
|