医中誌リンクサービス


文献リスト

1) 西澤正豊. 脊髄小脳変性症. In: 建川 清, 他, 編. 内科学. 第2版. 東京: 文光堂; 2003
医中誌リンクサービス
2) Tsuji S, Onodera O, Goto J, Nishizawa M; Study Group on Ataxic Diseases. Sporadic ataxias in Japan-a population-based epidemiological study. Cerebellum. 2008; 7: 189-97
PubMed CrossRef
医中誌リンクサービス
3) Ishikawa K, Mizusawa H, Saito M, et al. Autosomal dominant pure cerebellar ataxia. A clinical and genetic analysis of eight Japanese families. Brain. 1996; 199: 1173-82
医中誌リンクサービス
4) Ishikawa K, Tanaka H, Saito M, et al. Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13. 1-p13. 2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13. 1. Am J Hum Genet. 1997; 61: 336-46
PubMed CrossRef
医中誌リンクサービス
5) Nagaoka U, Takashima M, Ishikawa K, et al. A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology. 2000; 54: 1971-5
PubMed
医中誌リンクサービス
6) Takashima M, Ishikawa K, Nagaoka U, et al. A linkage disequilibrium at the candidate gene locus for 16q-linked autosomal dominant cerebellar ataxia type III in Japan. J Hum Genet. 2001; 46: 167-71
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
7) Li M, Ishikawa K, Toru S, et al. Physical map and haplotype analysis of 16q-linked autosomal dominant cerebellar ataxia(ADCA)type III in Japan. J Hum Genet. 2003; 48: 111-8
医学中央雑誌刊行会  PubMed
医中誌リンクサービス
8) Ishikawa K, Toru S, Tsunemi T, et al. An autosomal dominant cerebellar ataxia linked to chromosome 16q22. 1 is associated with a single-nucleotide substitution in the 5ʼ untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains. Am J Hum Genet. 2005; 77: 280-96
PubMed CrossRef
医中誌リンクサービス
9) Ohata T, Yoshida K, Sakai H, et al. A -16C>T substitution in the 5ʼ UTR of the puratrophin-1 gene is prevalent in autosomal dominant cerebellar ataxia in Nagano. J Hum Genet. 2006; 51: 461-6
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
10) Ouyang Y, Sakoe K, Shimazaki H, et al. 16q-linked autosomal dominant cerebellar ataxia: a clinical and genetic study. J Neurol Sci. 2006; 247: 180-6
PubMed CrossRef
医中誌リンクサービス
11) Onodera Y, Aoki M, Mizuno H, et al. Clinical features of chromosome 16q22. 1 linked autosomal dominant cerebellar ataxia in Japanese. Neurology. 2006; 67: 1300-2
PubMed CrossRef
医中誌リンクサービス
12) Basri R, Yabe I, Soma H, et al. Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in Hokkaido, the northern island of Japan: a study of 113 Japanese families. J Hum Genet. 2007; 52: 848-55
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
13) Hayashi M, Adachi Y, Mori M, et al. Clinical and genetic epidemiological study of 16q22. 1-linked autosomal dominant cerebellar ataxia in western Japan. Acta Neurol Scand. 2007; 116: 123-7
PubMed CrossRef
医中誌リンクサービス
14) Nozaki H, Ikeuchi T, Kawakami A, et al. Clinical and genetic characterizations of 16q-linked autosomal dominant spinocerebellar ataxia(AD-SCA)and frequency analysis of AD-SCA in the Japanese population. Mov Dis. 2007; 22: 857-62
医中誌リンクサービス
15) Hirano R, Takashima H, Okubo R, et al. Clinical and genetic characterization of 16q-linked autosomal dominant spinocerebellar ataxia in South Kyushu, Japan. J Hum Genet. 2009; 54: 377-81
PubMed CrossRef
医中誌リンクサービス
16) Sato K, Yabe I, Fukuda Y, et al. Mapping of autosomal dominant cerebellar ataxia without the pathogenic PPP2R2B mutation to the locus for spinocerebellar ataxia 12. Arch Neurol. 2010; 67: 1257-62
PubMed CrossRef
医中誌リンクサービス
17) Owada K, Ishikawa K, Toru S, et al. A clinical, genetic, and neuropathologic study in a family with 16q-linked ADCA type III. Neurology. 2005; 65: 629-32
PubMed CrossRef
医中誌リンクサービス
18) Ishikawa K, Mizusawa H. The chromosome 16q-linked autosomal dominant cerebellar ataxia(16q-ADCA*): A newly identified degenerative ataxia in Japan showing peculiar morphological changes of the Purkinje cell. Neuropathology. 2010 Jul 27. [Epub ahead of print]
医中誌リンクサービス
19) Shintaku M, Kaneda D. Chromosome 16q22. 1-linked autosomal dominant cerebellar ataxia: an autopsy case report with some new observations on cerebellar pathology. Neuropathology. 2009; 29: 285-92
PubMed
医中誌リンクサービス
20) Hirano A, Llena JF, French JH, et al. Fine structure of the cerebellar cortex in Menkes Kinky-hair disease. X-chromosome-linked copper malabsorption. Arch Neurol. 1977; 34: 52-6
PubMed
医中誌リンクサービス
21) Mori O, Yamazaki M, Ohaki Y, et al. Mitochondrial encephalomyopathy with lactic acidosis and stroke like episodes(MELAS)with prominent degeneration of the intestinal wall and cactus-like cerebellar pathology. Acta Neuropathol. 2000; 100: 712-7
PubMed CrossRef
医中誌リンクサービス
22) Flanigan K, Gardner K, Alderson K, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy(SCA4): clinical description and genetic localization to chromosome 16q22. 1. Am J Hum Genet. 1996; 59: 392-9
PubMed
医中誌リンクサービス
23) Hellenbroich Y, Bubel S, Pawlack H, et al. Refinement of the spinocerebellar ataxia type 4 locus in a large German family and exclusion of CAG repeat expansions in this region. J Neurol. 2003; 250: 668-71
PubMed CrossRef
医中誌リンクサービス
24) Hellenbroich Y, Pawlack H, Rüb U, et al. Spinocerebellar ataxia type 4. Investigation of 34 candidate genes. J Neurol. 2005; 252: 1472-5
PubMed CrossRef
医中誌リンクサービス
25) Hellenbroich Y, Gierga K, Reusche E, et al. Spinocerebellar ataxia type 4(SCA4): Initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration. J Neural Transm. 2006; 113: 829-43
PubMed CrossRef
医中誌リンクサービス
26) Amino T, Ishikawa K, Toru S, et al. Redefining the disease locus of 16q22. 1-linked autosomal dominant cerebellar ataxia. J Hum Genet. 2007; 52: 643-9
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
27) McPherson JD, Marra M, Hillier L, et al. International Human Genome Mapping Consortium. A physical map of the human genome. Nature. 2001; 409: 934-41
PubMed CrossRef
医中誌リンクサービス
28) Hara K, Shiga A, Nozaki H, et al. Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology. 2008; 71: 547-51
PubMed CrossRef
医中誌リンクサービス
29) Sato N, Amino T, Kobayashi K, et al. Spinocerebellar ataxia type 31 is associated with“inserted"penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet. 2009; 85: 544-57
PubMed CrossRef
医中誌リンクサービス
30) Cleary JD, Pearson CE. The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence. Cytogenet Genome Res. 2003; 100(1-4): 25-55
PubMed CrossRef
医中誌リンクサービス
31) Grady DL, Ratliff RL, Robinson DL, et al. Highly conserved repetitive DNA sequences are present at human centromeres. Proc Natl Acad Sci U S A. 1992; 89: 1695-9
PubMed CrossRef
医中誌リンクサービス
32) Ranum LP, Cooper TA. RNA-mediated neuromuscular disorders. Annu Rev Neurosci. 2006; 29: 259-77
PubMed CrossRef
医中誌リンクサービス
33) Todd PK, Paulson HL. RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol. 2010; 67: 291-300
PubMed
医中誌リンクサービス
34) Daughters RS, Tuttle DL, Gao W, et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet. 2009; 5: e1000600
PubMed CrossRef
医中誌リンクサービス
35) White MC, Gao R, Xu W, et al. Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10. PLoS Genet. 2010; 6: e1000984
PubMed CrossRef
医中誌リンクサービス
36) Jin P, Zarnescu DC, Zhang F, et al. RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron. 2003; 39: 739-47
PubMed CrossRef
医中誌リンクサービス
37) Ward AJ, Rimer M, Killian JM, et al. CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum Mol Genet. 2010; 19: 3614-22
PubMed CrossRef
医中誌リンクサービス
38) Mulders SA, van den Broek WJ, Wheeler TM, et al. Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci U S A. 2009; 106: 13915-20
PubMed CrossRef
医中誌リンクサービス
39) Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell. 2009; 136: 777-93
PubMed CrossRef
医中誌リンクサービス
40) Longman D, Johnstone IL, Cáceres JF. Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO J. 2000; 19: 1625-37
PubMed CrossRef
医中誌リンクサービス
41) Sanford JR, Wang X, Mort M, et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 2009; 19: 381-94
PubMed
医中誌リンクサービス
42) Xu X, Yang D, Ding JH, et al. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell. 2005; 120: 59-72
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp