1) 西澤正豊. 脊髄小脳変性症. In: 建川 清, 他, 編. 内科学. 第2版. 東京: 文光堂; 2003
|
|
|
2) Tsuji S, Onodera O, Goto J, Nishizawa M; Study Group on Ataxic Diseases. Sporadic ataxias in Japan-a population-based epidemiological study. Cerebellum. 2008; 7: 189-97
|
|
|
3) Ishikawa K, Mizusawa H, Saito M, et al. Autosomal dominant pure cerebellar ataxia. A clinical and genetic analysis of eight Japanese families. Brain. 1996; 199: 1173-82
|
|
|
4) Ishikawa K, Tanaka H, Saito M, et al. Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13. 1-p13. 2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13. 1. Am J Hum Genet. 1997; 61: 336-46
|
|
|
5) Nagaoka U, Takashima M, Ishikawa K, et al. A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology. 2000; 54: 1971-5
|
|
|
6) Takashima M, Ishikawa K, Nagaoka U, et al. A linkage disequilibrium at the candidate gene locus for 16q-linked autosomal dominant cerebellar ataxia type III in Japan. J Hum Genet. 2001; 46: 167-71
|
|
|
7) Li M, Ishikawa K, Toru S, et al. Physical map and haplotype analysis of 16q-linked autosomal dominant cerebellar ataxia(ADCA)type III in Japan. J Hum Genet. 2003; 48: 111-8
|
|
|
8) Ishikawa K, Toru S, Tsunemi T, et al. An autosomal dominant cerebellar ataxia linked to chromosome 16q22. 1 is associated with a single-nucleotide substitution in the 5ʼ untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains. Am J Hum Genet. 2005; 77: 280-96
|
|
|
9) Ohata T, Yoshida K, Sakai H, et al. A -16C>T substitution in the 5ʼ UTR of the puratrophin-1 gene is prevalent in autosomal dominant cerebellar ataxia in Nagano. J Hum Genet. 2006; 51: 461-6
|
|
|
10) Ouyang Y, Sakoe K, Shimazaki H, et al. 16q-linked autosomal dominant cerebellar ataxia: a clinical and genetic study. J Neurol Sci. 2006; 247: 180-6
|
|
|
11) Onodera Y, Aoki M, Mizuno H, et al. Clinical features of chromosome 16q22. 1 linked autosomal dominant cerebellar ataxia in Japanese. Neurology. 2006; 67: 1300-2
|
|
|
12) Basri R, Yabe I, Soma H, et al. Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in Hokkaido, the northern island of Japan: a study of 113 Japanese families. J Hum Genet. 2007; 52: 848-55
|
|
|
13) Hayashi M, Adachi Y, Mori M, et al. Clinical and genetic epidemiological study of 16q22. 1-linked autosomal dominant cerebellar ataxia in western Japan. Acta Neurol Scand. 2007; 116: 123-7
|
|
|
14) Nozaki H, Ikeuchi T, Kawakami A, et al. Clinical and genetic characterizations of 16q-linked autosomal dominant spinocerebellar ataxia(AD-SCA)and frequency analysis of AD-SCA in the Japanese population. Mov Dis. 2007; 22: 857-62
|
|
|
15) Hirano R, Takashima H, Okubo R, et al. Clinical and genetic characterization of 16q-linked autosomal dominant spinocerebellar ataxia in South Kyushu, Japan. J Hum Genet. 2009; 54: 377-81
|
|
|
16) Sato K, Yabe I, Fukuda Y, et al. Mapping of autosomal dominant cerebellar ataxia without the pathogenic PPP2R2B mutation to the locus for spinocerebellar ataxia 12. Arch Neurol. 2010; 67: 1257-62
|
|
|
17) Owada K, Ishikawa K, Toru S, et al. A clinical, genetic, and neuropathologic study in a family with 16q-linked ADCA type III. Neurology. 2005; 65: 629-32
|
|
|
18) Ishikawa K, Mizusawa H. The chromosome 16q-linked autosomal dominant cerebellar ataxia(16q-ADCA*): A newly identified degenerative ataxia in Japan showing peculiar morphological changes of the Purkinje cell. Neuropathology. 2010 Jul 27. [Epub ahead of print]
|
|
|
19) Shintaku M, Kaneda D. Chromosome 16q22. 1-linked autosomal dominant cerebellar ataxia: an autopsy case report with some new observations on cerebellar pathology. Neuropathology. 2009; 29: 285-92
|
|
|
20) Hirano A, Llena JF, French JH, et al. Fine structure of the cerebellar cortex in Menkes Kinky-hair disease. X-chromosome-linked copper malabsorption. Arch Neurol. 1977; 34: 52-6
|
|
|
21) Mori O, Yamazaki M, Ohaki Y, et al. Mitochondrial encephalomyopathy with lactic acidosis and stroke like episodes(MELAS)with prominent degeneration of the intestinal wall and cactus-like cerebellar pathology. Acta Neuropathol. 2000; 100: 712-7
|
|
|
22) Flanigan K, Gardner K, Alderson K, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy(SCA4): clinical description and genetic localization to chromosome 16q22. 1. Am J Hum Genet. 1996; 59: 392-9
|
|
|
23) Hellenbroich Y, Bubel S, Pawlack H, et al. Refinement of the spinocerebellar ataxia type 4 locus in a large German family and exclusion of CAG repeat expansions in this region. J Neurol. 2003; 250: 668-71
|
|
|
24) Hellenbroich Y, Pawlack H, Rüb U, et al. Spinocerebellar ataxia type 4. Investigation of 34 candidate genes. J Neurol. 2005; 252: 1472-5
|
|
|
25) Hellenbroich Y, Gierga K, Reusche E, et al. Spinocerebellar ataxia type 4(SCA4): Initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration. J Neural Transm. 2006; 113: 829-43
|
|
|
26) Amino T, Ishikawa K, Toru S, et al. Redefining the disease locus of 16q22. 1-linked autosomal dominant cerebellar ataxia. J Hum Genet. 2007; 52: 643-9
|
|
|
27) McPherson JD, Marra M, Hillier L, et al. International Human Genome Mapping Consortium. A physical map of the human genome. Nature. 2001; 409: 934-41
|
|
|
28) Hara K, Shiga A, Nozaki H, et al. Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology. 2008; 71: 547-51
|
|
|
29) Sato N, Amino T, Kobayashi K, et al. Spinocerebellar ataxia type 31 is associated with“inserted"penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet. 2009; 85: 544-57
|
|
|
30) Cleary JD, Pearson CE. The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence. Cytogenet Genome Res. 2003; 100(1-4): 25-55
|
|
|
31) Grady DL, Ratliff RL, Robinson DL, et al. Highly conserved repetitive DNA sequences are present at human centromeres. Proc Natl Acad Sci U S A. 1992; 89: 1695-9
|
|
|
32) Ranum LP, Cooper TA. RNA-mediated neuromuscular disorders. Annu Rev Neurosci. 2006; 29: 259-77
|
|
|
33) Todd PK, Paulson HL. RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol. 2010; 67: 291-300
|
|
|
34) Daughters RS, Tuttle DL, Gao W, et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet. 2009; 5: e1000600
|
|
|
35) White MC, Gao R, Xu W, et al. Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10. PLoS Genet. 2010; 6: e1000984
|
|
|
36) Jin P, Zarnescu DC, Zhang F, et al. RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron. 2003; 39: 739-47
|
|
|
37) Ward AJ, Rimer M, Killian JM, et al. CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum Mol Genet. 2010; 19: 3614-22
|
|
|
38) Mulders SA, van den Broek WJ, Wheeler TM, et al. Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci U S A. 2009; 106: 13915-20
|
|
|
39) Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell. 2009; 136: 777-93
|
|
|
40) Longman D, Johnstone IL, Cáceres JF. Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO J. 2000; 19: 1625-37
|
|
|
41) Sanford JR, Wang X, Mort M, et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 2009; 19: 381-94
|
|
|
42) Xu X, Yang D, Ding JH, et al. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell. 2005; 120: 59-72
|
|
|