1) Flickinger JC, Kondziolka D, Maitz AH, et al. An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol. 2002; 63: 347-54
|
|
|
2) Maruyama K, Kawahara N, Shin M, et al. The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med. 2005; 352: 146-53
|
|
|
3) Sasaki T, Kurita H, Saito I, et al. Arteriovenous malformations in the basal ganglia and thalamus: management and results in 101 cases. J Neurosurg. 1998; 88: 285-92
|
|
|
4) Sasaki T, Kurita H, Kawamoto S, et al. Clinical outcome of radiosurgery, embolization and microsurgery for AVMs in the thalamus and basal ganglia. J Clin Neurosci. 1998; 5 Suppl: 95-7
|
|
|
5) Ogilvy CS, Stieg PE, Awad I, et al. AHA Scientific Statement: Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke. 2001; 32: 1458-71
|
|
|
6) Kiran NA, Kale SS, Kasliwal MK, et al. Gamma knife radiosurgery for arteriovenous malformations of basal ganglia, thalamus and brain-stem-a retrospective study comparing the results with that for AVMs at other intracranial locations. Acta Neurochir (Wien). 2009;
|
|
|
7) Andrade-Souza YM, Zadeh G, Scora D, et al. Radiosurgery for basal ganglia, internal capsule, and thalamus arteriovenous malformation: clinical outcome. Neurosurgery. 2005; 56: 56-63
|
|
|
8) Pollock BE, Gorman DA, Brown PD. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J Neurosurg. 2004; 100: 210-4
|
|
|
9) Shin M, Kawamoto S, Kurita H, et al. Retrospective analysis of a 10-year experience of stereotactic radio surgery for arteriovenous malformations in children and adolescents. J Neurosurg. 2002; 97: 779-84
|
|
|
10) Marcu SM, Wu QJ, Pillai K, et al. GammaPlan-Leksell Gamma Knife radiosurgery treatment planning verification method. Med Phys. 2000; 27: 2146-9
|
|
|
11) Koga T, Shin M, Maruyama K, et al. Long-term Outcomes of Stereotactic Radiosurgery for Arteriovenous Malformations in the Thalamus. Neurosurgery. 2010; 67: 398-403
|
|
|
12) Taschner CA, Gieseke J, Le Thuc V, et al. Intracranial arteriovenous malformation: time-resolved contrast-enhanced MR angiography with combination of parallel imaging, keyhole acquisition, and k-space sampling techniques at 1. 5 T. Radiology. 2008; 246: 871-9
|
|
|
13) Taschner CA, Le Thuc V, Reyns N, et al. Gamma Knife surgery for arteriovenous malformations in the brain: integration of time-resolved contrast-enhanced magnetic resonance angiography into dosimetry planning. Technical note. J Neurosurg. 2007; 107: 854-9
|
|
|
14) Kunishima K, Mori H, Itoh D, et al. Assessment of arteriovenous malformations with 3-Tesla time-resolved, contrast-enhanced, three-dimen-sional magnetic resonance angiography. J Neurosurg. 2009; 110: 492-9
|
|
|
15) Maruyama K, Kamada K, Shin M, et al. Integration of three-dimensional corticospinal tractography into treatment planning for gamma knife surgery. J Neurosurg. 2005; 102: 673-7
|
|
|
16) Maruyama K, Kamada K, Shin M, et al. Optic radiation tractography integrated into simulated treatment planning for Gamma Knife surgery. J Neurosurg. 2007; 107: 721-6
|
|
|
17) Maruyama K, Koga T, Kamada K, et al. Arcuate fasciculus tractography integrated into Gamma Knife surgery. J Neurosurg. 2009; 111: 520-6
|
|
|
18) Stancanello J, Cavedon C, Francescon P, et al. BOLD fMRI integration into radiosurgery treatment planning of cerebral vascular malformations. Med Phys. 2007; 34: 1176-84
|
|
|
19) Koga T, Maruyama K, Igaki H, et al. The value of image coregistration during stereotactic radio-surgery. Acta Neurochir (Wien). 2009; 151: 465- 71
|
|
|
20) Sanchez-Mejia RO, McDermott MW, Tan J, et al. Radiosurgery facilitates resection of brain arterio-venous malformations and reduces surgical morbidity. Neurosurgery. 2009; 64: 231-8
|
|
|
21) Pan JW, Zhou HJ, Zhan RY, et al. Supratentorial Brain AVM Embolization with Onyx-18 and Post-Embolization Management. A Single-Center Experience. Interv Neuroradiol. 2009; 15: 275-82
|
|
|
22) Shtraus N, Schifter D, Corn BW, et al. Radio-surgical treatment planning of AVM following embolization with Onyx: possible dosage error in treatment planning can be averted. J Neurooncol. 2010; 98: 271-6
|
|
|
23) Ha JK, Choi SK, Kim TS, et al. Multi-modality treatment for intracranial arteriovenous malformation associated with arterial aneurysm. J Korean Neurosurg Soc. 2009; 46: 116-22
|
|
|
24) van den Berg R, Buis DR, Lagerwaard FJ, et al. Extensive white matter changes after stereotactic radiosurgery for brain arteriovenous malformations: a prognostic sign for obliteration? Neurosurgery. 2008; 63: 1064-9
|
|
|
25) Wanebo JE, Kidd GA, King MC, et al. Hyperbaric oxygen therapy for treatment of adverse radiation effects after stereotactic radiosurgery of arteriovenous malformations: case report and review of literature. Surg Neurol. 2009; 72: 162-7
|
|
|
26) Izawa M, Chernov M, Hayashi M, et al. Management and prognosis of cysts developed on long-term follow-up after Gamma Knife radiosurgery for intracranial arteriovenous malformations. Surg Neurol. 2007; 68: 400-6
|
|
|
27) Kurita H, Sasaki T, Kawamoto S, et al. Chronic encapsulated expanding hematoma in association with gamma knife stereotactic radiosurgery for a cerebral arteriovenous malformation. Case report. J Neurosurg. 1996; 84: 874-8
|
|
|
28) Kunishima K, Shin M, Kunimatsu A, et al. Contrast-enhanced magnetic resonance characteristics of arteriovenous malformations after gamma knife radiosurgery: predictors of post-angiographic obliteration hemorrhage. Neurosurgery. 2010; 67: 100-9
|
|
|
29) Pollock BE, Kline RW, Stafford SL, et al. The rationale and technique of staged-volume arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys. 2000; 48: 817-24
|
|
|
30) Jones J, Jang S, Getch CC, et al. Advances in the radiosurgical treatment of large inoperable arteriovenous malformations. Neurosurg Focus. 2007; 23: E7
|
|
|
31) Sirin S, Kondziolka D, Niranjan A, et al. Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery. 2006; 58: 17-27
|
|
|
32) Karlsson B, Jokura H, Yamamoto M, et al. Is repeated radiosurgery an alternative to staged radiosurgery for very large brain arteriovenous malformations? J Neurosurg. 2007; 107: 740-4
|
|
|
33) Chang SD, Marcellus ML, Marks MP, et al. Multimodality treatment of giant intracranial arteriovenous malformations. Neurosurgery. 2007; 61: 432-42
|
|
|
34) Stapf C, Mohr JP. Unruptured brain arteriovenous malformations should be treated conservatively: yes. Stroke. 2007; 38: 3308-9
|
|
|
35) Cockroft KM. Unruptured brain arteriovenous malformations should be treated conservatively: no. Stroke. 2007; 38: 3310-1
|
|
|
36) Mohr JP, Moskowitz AJ, Stapf C, et al. The ARUBA Trial: Current Status, Future Hopes. Stroke. 2010; 41: e537-40
|
|
|
37) Mathiesen T. Arguments against the proposed randomised trial (ARUBA). Neuroradiology. 2008; 50: 469-71
|
|
|
38) Achrol AS, Guzman R, Varga M, et al. Pathogenesis and radiobiology of brain arterio-venous malformations: implications for risk stratification in natural history and posttreatment course. Neurosurg Focus. 2009; 26: E9
|
|
|
39) Lawton MT, Arnold CM, Kim YJ, et al. Radiation arteriopathy in the transgenic arteriovenous fistula model. Neurosurgery. 2008; 62: 1129-38
|
|
|
40) Hashimoto T, Mesa-Tejada R, Quick CM, et al. Evidence of increased endothelial cell turnover in brain arteriovenous malformations. Neurosurgery. 2001; 49: 124-31
|
|
|
41) Lee CZ, Xue Z, Zhu Y, et al. Matrix metalloproteinase-9 inhibition attenuates vascular endothelial growth factor-induced intracerebral hemorrhage. Stroke. 2007; 38: 2563-8
|
|
|
42) Frenzel T, Lee CZ, Kim H, et al. Feasibility of minocycline and doxycycline use as potential vasculostatic therapy for brain vascular malformations: pilot study of adverse events and tolerance. Cerebrovasc Dis. 2008; 25: 157-63
|
|
|
43) Nuki Y, Matsumoto MM, Tsang E, et al. Roles of macrophages in flow-induced outward vascular remodeling. J Cereb Blood Flow Metab. 2009; 29: 495-503
|
|
|
44) Ota R, Kurihara C, Tsou TL, et al. Roles of matrix metalloproteinases in flow-induced outward vascular remodeling. J Cereb Blood Flow Metab. 2009; 29: 1547-58
|
|
|