1) Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med. 1960; 17: 260-71
|
|
|
2) Robinson BW, Lake RA. Advances in malignant mesothelioma. N Engl J Med. 2005; 353: 1591-603
|
|
|
3) Yang H, Testa JR, Carbone M. Mesothelioma epidemiology, carcinogenesis, and pathogenesis. Curr Treat Options Oncol. 2008; 9(2-3): 147-57
|
|
|
4) López-Ríos F, Illei PB, Rusch V, et al. Evidence against a role for SV40 infection in human mesotheliomas and high risk of false-positive PCR results owing to presence of SV40 sequences in common laboratory plasmids. Lancet. 2004; 364: 1157-66
|
|
|
5) Carbone M, Emri S, Dogan AU, et al. A mesothelioma epidemic in Cappadocia: scientific developments and unexpected social outcomes. Nat Rev Cancer. 2007; 7: 147-54
|
|
|
6) Hodgson JT, Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. Ann Occup Hyg. 2000; 44(8): 565-601
|
|
|
7) Miserocchi G, Sancini G, Mantegazza F, et al. Translocation pathways for inhaled asbestos fibers. Environ Health. 2008; 7: 4
|
|
|
8) Donaldson K, Murphy FA, Duffin R, et al. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010; 7: 5
|
|
|
9) Müller KM, Schmitz I, Konstantinidis K. Black spots of the parietal pleura: morphology and formal pathogenesis. Respiration. 2002; 69: 261-7
|
|
|
10) 高田礼子. アスベストによる中皮腫発がんの分子機構. 医学のあゆみ. 2006; 11-12: 817-20
|
|
|
11) Robinson BW, Musk AW, Lake RA. Malignant mesothelioma. Lancet. 2005; 366: 397-408
|
|
|
12) Kamp DW. Asbestos-induced lung diseases: an update. Transl Res. 2009; 153: 143-52
|
|
|
13) Hesterberg TW, Barrett JC. Induction by asbestos fibers of anaphase abnormalities: mechanism for aneuploidy induction and possibly carcinogenesis. Carcinogenesis. 1985; 6: 473-5
|
|
|
14) Shukla A, Gulumian M, Hei TK, et al. Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic Biol Med. 2003; 34: 1117-29
|
|
|
15) Jiang L, Nagai H, Ohara H, et al. Characteristics and modifying factors of asbestos-induced oxidative DNA damage. Cancer Sci. 2008; 99: 2142-51
|
|
|
16) Msiska Z, Pacurari M, Mishra A, et al. DNA double-strand breaks by asbestos, silica, and titanium dioxide: possible biomarker of carcinogenic potential? Am J Respir Cell Mol Biol. 2010; 43: 210-9
|
|
|
17) Murthy S, Adamcakova-Dodd A, Perry SS, et al. Modulation of reactive oxygen species by Racl or catalase prevents asbestos-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2009; 297: L846-55
|
|
|
18) Pociask DA, Sime PJ, Brody AR. Asbestos-derived reactive oxygen species activate TGF-beta1. Lab Invest. 2004; 84: 1013-23
|
|
|
19) Ghio A, Tan RJ, Ghio K, et al. Iron accumulation and expression of iron-related proteins following murine exposure to crocidolite. J Environ Pathol Toxicol Oncol. 2009; 28: 153-62
|
|
|
20) Ghio AJ, Stonehuerner J, Richards J, et al. Iron homeostasis in the lung following asbestos exposure. Antioxid Redox Signal. 2008; 10: 371-7
|
|
|
21) Aung W, Hasegawa S, Furukawa T, et al. Potential role of ferritin heavy chain in oxidative stress and apoptosis in human mesothelial and mesothelioma cells: implications for asbestos-induced oncogenesis. Carcinogenesis. 2007; 28: 2047-52
|
|
|
22) Gao F, Koenitzer JR, Tobolewski JM, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008; 283: 6058-66
|
|
|
23) Kliment CR, Englert JM, Gochuico BR, et al. Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J Biol Chem. 2009; 284: 3537-45
|
|
|
24) Heintz NH, Janssen-Heininger YM, Mossman BT. Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol. 2010; 42: 133-9
|
|
|
25) Jaurand MC, Fleury-Feith J. Pathogenesis of malignant pleural mesothelioma. Respirology. 2005; 10: 2-8
|
|
|
26) Heintz NH, Janssen YM, Mossman BT. Persistent induction of c-fos and c-jun expression by asbestos. Proc Natl Acad Sci U S A. 1993; 90: 3299-303
|
|
|
27) Manning CB, Cummins AB, Jung MW, et al. A mutant epidermal growth factor receptor targeted to lung epithelium inhibits asbestos-induced proliferation and proto-oncogene expression. Cancer Res. 2002; 62: 4169-75
|
|
|
28) Ramos-Nino ME, Timblin CR, Mossman BT. Mesothelial cell transformation requires increased AP-1 binding activity and ERK-dependent Fra-1 expression. Cancer Res. 2002; 62: 6065-9
|
|
|
29) Scapoli L, Ramos-Nino ME, Martinelli M, et al. Src-dependent ERK5 and Src/EGFR-dependent ERK1/2 activation is required for cell proliferation by asbestos. Oncogene. 2004; 23: 805-13
|
|
|
30) Yang H, Bocchetta M, Kroczynska B, et al. TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappa B-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci U S A. 2006; 103: 10397-402
|
|
|
31) Janssen YM, Barchowsky A, Treadwell M, et al. Asbestos induces nuclear factor kappa B (NF-kappa B) DNA-binding activity and NF-kappa B-dependent gene expression in tracheal epithelial cells. Proc Natl Acad Sci U S A. 1995; 92: 8458-62
|
|
|
32) Altomare DA, You H, Xiao GH, et al. Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene. 2005; 24: 6080-9
|
|
|
33) Dostert C, Pétrilli V, Van Bruggen R, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008; 320: 674-7
|
|
|
34) Cassel SL, Eisenbarth SC, Iyer SS, et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A. 2008; 105: 9035-40
|
|
|
35) Liu G, Beri R, Mueller A, et al. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis. Chem Biol Interact. 2010. In press
|
|
|
36) Goldberg JL, Zanella CL, Janssen YM, et al. Novel cell imaging techniques show induction of apoptosis and proliferation in mesothelial cells by asbestos. Am J Respir Cell Mol Biol. 1997; 17: 265-71
|
|
|
37) Panduri V, Weitzman SA, Chandel N, et al. The mitochondria-regulated death pathway mediates asbestos-induced alveolar epithelial cell apoptosis. Am J Respir Cell Mol Biol. 2003; 28: 241-8
|
|
|
38) Shukla A, Stern M, Lounsbury KM, et al. Asbestos-induced apoptosis is protein kinase C delta-dependent. Am J Respir Cell Mol Biol. 2003; 29: 198-205
|
|
|
39) Panduri V, Surapureddi S, Soberanes S, et al. P53 mediates amosite asbestos-induced alveolar epithelial cell mitochondria-regulated apoptosis. Am J Respir Cell Mol Biol. 2006; 34: 443-52
|
|
|
40) Buder-Hoffmann SA, Shukla A, Barrett TF, et al. A protein kinase C delta-dependent protein kinase D pathway modulates ERK1/2 and JNK1/2 phosphorylation and Bim-associated apoptosis by asbestos. Am J Pathol. 2009; 174: 449-59
|
|
|
41) Barlow CA, Barrett TF, Shukla A, et al. Asbestos-mediated CREB phosphorylation is regulated by protein kinase A and extracellular signal-regulated kinases 1/2. Am J Physiol Lung Cell Mol Physiol. 2007; 292: L1361-9
|
|
|
42) Panduri V, Liu G, Surapureddi S, et al. Role of mitochondrial hOGG1 and aconitase in oxidant-induced lung epithelial cell apoptosis. Free Radic Biol Med. 2009; 47: 750-9
|
|
|
43) Yang H, Rivera Z, Jube S, et al. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci U S A. 2010; 107: 12611-6
|
|
|
44) Nakamura E, Makishima A, Hagino K, et al. Accumulation of radium in ferruginous protein bodies formed in lung tissue: association of resulting radiation hotspots with malignant mesothelioma and other malignancies. Proc Jpn Acad Ser B Phys Biol Sci. 2009; 85: 229-39
|
|
|
45) Carbone M, Kratzke RA, Testa JR. The pathogenesis of mesothelioma. Semin Oncol. 2002; 29: 2-17
|
|
|
46) Froom P, Lahat N, Kristal-Boneh E, et al. Circulating natural killer cells in retired asbestos cement workers. J Occup Environ Med. 2000; 42: 19-24
|
|
|
47) Nishimura Y, Miura Y, Maeda M, et al. Impairment in cytotoxicity and expression of NK cell- activating receptors on human NK cells following exposure to asbestos fibers. Int J Immunopathol Pharmacol. 2009; 22: 579-90
|
|
|
48) Sekido Y. Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells. Cancer Sci. 2010; 101: 1-6
|
|
|
49) 植松和嗣. 中皮腫の分子解析. 日胸. 2006; 65: 606-16
|
|
|
50) Musti M, Kettunen E, Dragonieri S, et al. Cytogenetic and molecular genetic changes in malignant mesothelioma. Cancer Genet Cytogenet. 2006; 170: 9-15
|
|
|
51) Altomare DA, Menges CW, Pei J, et al. Activated TNF-alpha/NF-kappa B signaling via down-regulation of Fas-associated factor 1 in asbestos-induced mesotheliomas from Arf knockout mice. Proc Natl Acad Sci U S A. 2009; 106: 3420-5
|
|
|
52) Cheng JQ, Lee WC, Klein MA, et al. Frequent mutations of NF2 and allelic loss from chromosome band 22q12 in malignant mesothelioma: evidence for a two-hit mechanism of NF2 inactivation. Genes Chromosomes Cancer. 1999; 24: 238-42
|
|
|
53) Ivanova AV, Ivanov SV, Prudkin L, et al. Mechanisms of FUS1/TUSC2 deficiency in mesothelioma and its tumorigenic transcriptional effects. Mol Cancer. 2009; 8: 91
|
|
|
54) Gordon GJ, Rockwell GN, Jensen RV, et al. Identification of novel candidate oncogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling. Am J Pathol. 2005; 166: 1827-40
|
|
|
55) Taniguchi T, Karnan S, Fukui T, et al. Genomic profiling of malignant pleural mesothelioma with array-based comparative genomic hybridization shows frequent non-random chromosomal alteration regions including JUN amplification on 1p32. Cancer Sci. 2007; 98: 438-46
|
|
|
56) Heintz NH, Janssen YM, Mossman BT. Persistent induction of c-fos and c-jun expression by asbestos. Proc Natl Acad Sci U S A. 1993; 90: 3299-303
|
|
|
57) Shukla A, MacPherson MB, Hillegass J, et al. Alterations in gene expression in human mesothelial cells correlate with mineral pathogenicity. Am J Respir Cell Mol Biol. 2009; 41: 114-23
|
|
|
58) Govindan R, Kratzke RA, Herndon JE, et al. Gefitinib in patients with malignant mesothelioma: a phase II study by the Cancer and Leukemia Group B. Clin Cancer Res. 2005; 11: 2300-4
|
|
|
59) Mathy A, Baas P, Dalesio O, et al. Limited efficacy of imatinib mesylate in malignant mesothelioma: a phase II trial. Lung Cancer. 2005; 50: 83-6
|
|
|
60) Kawaguchi K, Murakami H, Taniguchi T, et al. Combined inhibition of MET and EGFR suppresses proliferation of malignant mesothelioma cells. Carcinogenesis. 2009; 30: 1097-105
|
|
|
61) Sartore-Bianchi A, Gasparri F, Galvani A, et al. Bortezomib inhibits nuclear factor-kappa B dependent survival and has potent in vivo activity in mesothelioma. Clin Cancer Res. 2007; 13: 5942-51
|
|
|