1) Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell. 2010; 140: 460-76
|
|
|
2) Abtahian F, Guerriero A, Sebzda E, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 2003; 299: 247-51
|
|
|
3) Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995; 81: 695-704
|
|
|
4) Suzuki-Inoue K, Fuller GL, Garcia A, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood. 2006; 107: 542-9
|
|
|
5) Suzuki-Inoue K, Kato Y, Inoue O, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007; 282: 25993-6001
|
|
|
6) Ichise H, Ichise T, Ohtani O, et al. Phospholipase C gamma 2 is necessary for separation of blood and lymphatic vasculature in mice. Development. 2009; 136: 191-5
|
|
|
7) Schacht V, Ramirez MI, Hong YK, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003; 22: 3546-56
|
|
|
8) Uhrin P, Zaujec J, Breuss JM, et al. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood. 2010; 115: 3977-4005
|
|
|
9) Carramolino L, Fuentes J, Garcia-Andres C, et al. Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. Circ Res. 2010; 106: 1197-201
|
|
|
10) Bertozzi CC, Schmaier AA, Mericko P, et al. Platelets regulate lymphatic vascular develop-ment through CLEC-2-SLP-76 signaling. Blood. 2010; 116: 661-70
|
|
|
11) Suzuki-Inoue K, Inoue O, Ding G, et al. Essential in vivo roles of the c-type lectin receptor CLEC-2: Embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J Biol Chem. 2010; 285: 24494-507
|
|
|
12) Levin J, Peng JP, Baker GR, et al. Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2. Blood. 1999; 94: 3037-47
|
|
|
13) Hodivala-Dilke KM, McHugh KP, Tsakiris DA, et al. Beta 3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest. 1999; 103: 229-38
|
|
|
14) Moser M, Nieswandt B, Ussar S, et al. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 2008; 14: 325-30
|
|
|
15) Echtler K, Stark K, Lorenz M, et al. Platelets contribute to postnatal occlusion of the ductus arteriosus. Nat Med. 2010; 16: 75-82
|
|
|
16) Shivdasani RA, Orkin SH. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci U S A. 1995; 92: 8690-4
|
|
|
17) Boilard E, Nigrovic PA, Larabee K, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010; 327: 580-3
|
|
|
18) McMorran BJ, Marshall VM, de Graaf C, et al. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science. 2009; 323: 797-800
|
|
|
19) Ma AC, Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost. 2008; 6: 415-20
|
|
|
20) Leslie M. Cell biology. Beyond clotting: the powers of platelets. Science. 2010; 328: 562-4
|
|
|