1) Dixit VM, Green S, Sarma V, et al. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem. 1990; 265: 2973-8
|
|
|
2) Wertz IE, OʼRourke, KM, Zhou H, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappa B signalling. Nature. 2004; 430: 694-9
|
|
|
3) Heyninck K, Beyaert R. A20 inhibits NF-kappa B activation by dual ubiquitin-editing functions. Trends Biochem Sci 2005; 30; 1-4
|
|
|
4) Boone DL, Turer EE, Lee EG, et al. The ubiquitin-modifying enzyme A20 is required for termina-tion of Toll-like receptor responses. Nat Immunol. 2004; 5: 1052-60
|
|
|
5) Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-kappa B and cell death responses in A20-deficient mice. Science. 2000; 289: 2350-4
|
|
|
6) Vereecke L, Sze M, Guire CM, et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J Exp Med. 2010; 207: 1513-23
|
|
|
7) Plenge RM, Cotsapas C, Davies L, et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet. 2007; 39: 1477-82
|
|
|
8) Musone SL, Taylor KE, Lu TT, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet. 2008; 40: 1062-4
|
|
|
9) Boonyasrisawat W, Eberle D, Bacci S, et al. Tag polymorphisms at the A20 (TNFAIP3) locus are associated with lower gene expression and increased risk of coronary artery disease in type 2 diabetes. Diabetes. 2007; 56: 499-505
|
|
|
10) Karin M. Nuclear factor-kappa B in cancer development and progression. Nature. 2006; 441: 431-6
|
|
|
11) Lenz G, Davis RE, Ngo VN, et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008; 319: 1676-9
|
|
|
12) Compagno M, Lim WK, Grunn A, et al. Mutations of multiple genes cause deregulation of NF-kappa B in diffuse large B-cell lymphoma. Nature. 2009; 459: 717-21
|
|
|
13) Viswanatha DS, Dogan A. Hepatitis C virus and lymphoma. J Clin Pathol. 2007; 60: 1378-83
|
|
|
14) Parsonnet J, Isaacson PG. Bacterial infection and MALT lymphoma. N Engl J Med. 2004; 350: 213-5
|
|
|
15) Ekstrom Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008; 111: 4029-38
|
|
|
16) Honma K, Tsuzuki S, Nakagawa M, et al. TNFAIP3 is the target gene of chromosome band 6q23. 3-q24. 1 loss in ocular adnexal marginal zone B cell lymphoma. Genes Chromosomes Cancer. 2008; 47: 1-7
|
|
|
17) Chanudet E, Ye H, Ferry J, et al. A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in trans-location-negative MALT lymphoma of the ocular adnexa and salivary glands. J Pathol. 2009; 217: 420-30
|
|
|
18) Kato M, Sanada M, Kato I, et al. Frequent inactivation of A20 in B-cell lymphomas. Nature. 2009; 459: 712-6
|
|
|
19) Schmitz R, Hansmann ML, Bohle V, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009; 206: 981-9
|
|
|
20) Honma K, Tsuzuki S, Nakagawa M, et al. TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood. 2009; 114: 2467-75
|
|
|
21) Kuppers R. The biology of Hodgkinʼs lymphoma. Nat Rev Cancer. 2009; 9: 15-27
|
|
|
22) Hiramatsu H, Nishikomori R, Heike T, et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gamma cnull mice model. Blood. 2003; 102: 873-80
|
|
|
23) Novak U, Rinaldi A, Kwee I, et al. The NF-{kappa}B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood. 2009; 113: 4918-21
|
|
|