医中誌リンクサービス


文献リスト

1) Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. 20 years of gene therapy for SCID. Nat Immunol. 2010; 11: 457-60
PubMed CrossRef
医中誌リンクサービス
2) Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008; 118: 3132-42
PubMed CrossRef
医中誌リンクサービス
3) Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008; 118: 3143-50
PubMed CrossRef
医中誌リンクサービス
4) Nam CH, Rabbitts TH. The role of LMO2 in development and in T cell leukemia after chromosomal translocation or retroviral insertion. Mol Ther. 2006; 13: 15-25
PubMed CrossRef
医中誌リンクサービス
5) Davé UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagenesis insights. Science. 2004; 303: 333
PubMed CrossRef
医中誌リンクサービス
6) Davé UP, Akagi K, Tripathi R, et al. Murine leukemias with retroviral insertions at Lmo2 are predictive of the leukemias induced in SCID-X1 patients following retroviral gene therapy. PLoS Genet. 2009; 5: e1000491
PubMed CrossRef
医中誌リンクサービス
7) Schröder ARW, Shinn P, Chen H, et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002; 110: 521-9
PubMed CrossRef
医中誌リンクサービス
8) Wu X, Li Y, Crise B, et al. Transcription start regions in the human genome are favored targets for MLV integration. Science. 2003; 300: 1749-51
PubMed CrossRef
医中誌リンクサービス
9) Mitchell RS, Beitzel BF, Schroder ARW, et al. Retroviral integration: ASLV, HIV and MLV show distinct target site preferences. PLoS Biol. 2004; 2: e234
PubMed CrossRef
医中誌リンクサービス
10) Schmidt M, Hoffmann G, Wissler M, et al. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther. 2001; 12: 743-9
PubMed CrossRef
医中誌リンクサービス
11) Schmidt M, Zickler P, Hoffmann G, et al. Polyclonal long-term repopulating stem cell clones in a primate model. Blood. 2002; 100: 2737-43
PubMed CrossRef
医中誌リンクサービス
12) Deichmann A, Hacein-Bey-Abina S, Schmidt M, et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest. 2007; 117: 2225-32
PubMed CrossRef
医中誌リンクサービス
13) Schwarzwaelder K, Howe SJ, Schmidt M, et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest. 2007; 117: 2241-9
PubMed CrossRef
医中誌リンクサービス
14) Wang GP, Berry CC, Malani N, et al. Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood. 2010; 115: 4356-66
PubMed CrossRef
医中誌リンクサービス
15) Aiuti A, Cassani B, Andolfi G, et al. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J Clin Invest. 2007; 117: 2233-40
PubMed CrossRef
医中誌リンクサービス
16) Aiuti A, Cattaneo F, Galimberti S, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009; 360: 447-58
PubMed CrossRef
医中誌リンクサービス
17) Woods NB, Bottero V, Schmidt M, et al. Therapeutic gene causing lymphoma. Nature. 2006; 440: 1123
PubMed CrossRef
医中誌リンクサービス
18) Pike-Overzet K, de Ridder D, Weerkamp F, et al. Ectopic retroviral expression of LMO2, but not IL2Rγ, blocks human T-cell development from CD34+ cells: implications for leukemogenesis in gene therapy. Leukemia. 2007; 21: 754-63
PubMed
医中誌リンクサービス
19) Shou Y, Ma Z, Lu T, et al. Unique risk factors for insertional mutagenesis in a mouse model of XSCID gene therapy. Proc Natl Acad Sci U S A. 2006; 103: 11730-5
PubMed CrossRef
医中誌リンクサービス
20) Ott MG, Schmidt M, Schwarzwaelder K, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med. 2006; 12: 401-9
PubMed CrossRef
医中誌リンクサービス
21) Stein S, Ott MG, Schultze-Strasser S, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med. 2010; 16: 198-204
PubMed CrossRef
医中誌リンクサービス
22) Li Z, Düllmann J, Schiedlmeier B, et al. Murine leukemia induced by retroviral gene marking. Science. 2002; 296: 497
PubMed CrossRef
医中誌リンクサービス
23) Calmels B, Ferguson C, Laukkanen MO, et al. Recurrent retroviral vector integration at the Mds1/Evi1 locus in nonhuman primate hemato-poietic cells. Blood. 2005; 106: 2530-3
PubMed CrossRef
医中誌リンクサービス
24) Kustikova O, Fehse B, Modlich U, et al. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science. 2005; 308: 1171-4
PubMed CrossRef
医中誌リンクサービス
25) Du Y, Jenkins NA, Copeland NG. Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood. 2005; 106: 3932-9
PubMed CrossRef
医中誌リンクサービス
26) Kustikova OS, Geiger H, Li Z, et al. Retroviral vector insertion sites associated with dominant hematopoietic clones mark“stemness"pathways. Blood. 2007; 109: 1897-907
PubMed CrossRef
医中誌リンクサービス
27) Nucifora G, Laricchia-Robbio L, Senyuk V. EVI1 and hematopoietic disorders: History and perspectives. Gene. 2006; 368: 1-11
PubMed CrossRef
医中誌リンクサービス
28) Morishita K. Leukemogenesis of the EVI1/MEL1 gene family. Int J Hematol. 2007; 85: 279-86
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
29) Yuasa H, Oike Y, Iwama A, et al. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expres-sion. EMBO J. 2005; 24: 1976-87
PubMed CrossRef
医中誌リンクサービス
30) Métais J-Y, Dunbar CE. The MDS1-EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy. Mol Ther. 2008; 16: 439-49
PubMed CrossRef
医中誌リンクサービス
31) Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007; 128: 669-81
PubMed CrossRef
医中誌リンクサービス
32) Morris CA, Moazed D. Centromere assembly and propagation. Cell. 2007; 128: 647-50
PubMed CrossRef
医中誌リンクサービス
33) Jenuwein T. The epigenetic magic of histone lysine methylation. FEBS J. 2006; 273: 3121-35
PubMed CrossRef
医中誌リンクサービス
34) Cattaneo F, Nucifora G. EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J Cell Biochem. 2008; 105: 344-52
PubMed CrossRef
医中誌リンクサービス
35) Spensberger D, Delwel R. A novel interaction between the proto-oncogene Evi1 and histone methyltransferases, SUV39H1 and G9a. FEBS Lett. 2008; 582: 2761-7
PubMed CrossRef
医中誌リンクサービス
36) Goyama S, Nitta E, Yoshino, T et al. EVI-1 interacts with histone methyltransferases SUV39H1 and G9a for transcriptional repression and bone marrow immortalization. Leukemia. 2010; 24: 81-8
PubMed CrossRef
医中誌リンクサービス
37) Kondo Y, Shen L, Ahmed S, et al. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS One. 2008; 3: e2037
PubMed CrossRef
医中誌リンクサービス
38) Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009; 326: 818-23
PubMed CrossRef
医中誌リンクサービス
39) Zhou S, Mody D, DeRavin SS, et al. A self-inactivating lentiviral vector for SCID-X1 gene therapy that does not activate LMO2 expression in human T cells. Blood published online(May 10, 2010)
医中誌リンクサービス
40) Gabriel R, Eckenberg R, Paruzynski A, et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med. 2009; 15: 1431-6
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp