1) 曲直部寿夫, 藤本 淳, 星田嘉郎, 他. 人工心肺による直視下心臓内手術(本邦における最初の成功例). 臨床外科. 1956; 11: 443
|
|
|
2) Kozik DJ, Tweddell JS. Characterizing the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. 2006; 81: S2347-54
|
|
|
3) Menasche P. The inflammatory response to cardiopulmonary bypass and its impact on postoperative myocardial function. Curr Opin Cardiol. 1995; 10: 597-604
|
|
|
4) 高橋幸宏. 無輸血心臓手術(小児). In: 小柳 仁, 北村惣一郎, 安井久喬, 編. 心臓血管外科手術書. 東京: 先端医療技術研究所; 2002. p.21-30
|
|
|
5) Ando M, Takahashi Y, Suzuki N. Open heart surgery for small children without homologous blood transfusion by using remote pump head system. Ann Thorac Surg. 2004; 78: 1717-22
|
|
|
6) Karamlou T, Schulyz JM, Silliman C, et al. Using a miniaturized circuit and an asanguineous prime to reduce neutrophil-mediated organ dysfunction following infant cardiopulmonary bypass. Ann Thorac Surg. 2005; 80: 6-14
|
|
|
7) Jaggers J, Lawson JH. Coagulopathy and inflammation in neonatal heart surgery: Mecha-nism and strategies. Ann Thorac Surg. 2006; 81: S23606-6
|
|
|
8) Deptula J, Glogowski K, Merrigan K, et al. Evaluation of biocompatible cardiopulmonary bypass circuit use during pediatric open heart surgery. JECT. 2006; 38: 22-6
|
|
|
9) Suzuki Y, Daitoku K, Minakawa M, et al. Poly-2-methoxyethylacrylate- coated bypass circuits reduce activation of coagulation system and inflammatory response in congenital cardiac surgery. J Artif Organs. 2008; 11: 111-6
|
|
|
10) Jensen E, Andreasson S, Bengtsson A, et al. Influence of two different perfusion systems on inflammatory response in pediatric heart surgery. Ann Thorac Surg. 2003; 75: 919-25
|
|
|
11) Morariu AM, Loef BG, Aarts LP, et al. Dexamethasone: Benefit and prejudice for patients undergoing on-pump coronary artery bypass grafting: a study on myocardial, pulmonary, renal, intestinal, and hepatic injury. Chest. 2005; 128: 2677-87
|
|
|
12) Schroeder VA, Pearl JM, Schwartz SM, et al. Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces post bypass inflammatory mediator expression. Circulation. 2003; 107; 2823-8
|
|
|
13) Bronicki RA, Backer CL, Baden HP, et al. Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. 2000; 69: 1490-95
|
|
|
14) Schurr UP, Zund G, Hoerstrup SP, et al. Preoperative administration of steroids: influence on adhesion molecules and cytokines after cardiopulmonary bypass. Ann Thorac Surg. 2001; 72: 1316-20
|
|
|
15) Checchia PA, Backer CL, Bronicki RA, et al. Dexamethasone reduces postoperative troponin levels in children undergoing cardiopulmonary bypass. Crit Care Med. 2003; 31: 1742-5
|
|
|
16) Lodge AJ, Chai PJ, Daggett CW, et al. Methylprednisolone reduces the inflammatory response to cardiopulmonary bypass in neonatal piglets: Timing of dose is important. J Thorac Cardiovasc Surg. 1999; 117: 515-22
|
|
|
17) Gessler P, Hohl V, Carrel T, et al. Administration of steroids in pediatric cardiac surgery: impact on clinical outcome and systemic inflammatory response. Pediatr Cardiol. 2005; 26: 595-600
|
|
|
18) Lindberg L, Forsell C, Jogi P, et al. Effects of dexamethasone on clinical course, C-reactive protein, S100B protein and von Willebrand factor antigen after paediatric cardiac surgery. Br J Anaesth. 2003; 90: 728-32
|
|
|
19) Shum-Tim D, Tchervenkov C, Jamal AM, et al. Systemic steroid pretreatment improves cerebral protection after circulatory arrest. Ann Thorac Surg. 2001; 72: 1465-72
|
|
|
20) Langley SM, Chai PJ, Jaggers JJ, et al. Preoperative high dose methylprednisolone attenuates the cerebral response to deep hypothermic circulatory arrest. Eur J Cardiothorac Surg. 2000; 17: 279-86
|
|
|
21) Ando M, Park In-Sam, Wada N, et al. Steroid supplementation: A legitimate pharmacotherapy after neonatal open heart surgery. Ann Thorac Surg. 2005; 80: 1672-8
|
|
|
22) Mossinger H, Dietrich W. Activation of hemostasis during cardiopulmonary bypass and pediatric aprotinin dosage. Ann Thorac Surg. 1998; 65: S45-51
|
|
|
23) Davies MJ, Allen A, Kort H, et al. Prospective, randomized, doubleblind study of high-dose aprotinin in pediatric cardiac operation. Ann Thorac Surg. 1997; 63: 467-503
|
|
|
24) Mojcik CF, Levy JH. Aprotinin and systemic inflammatory response after cardiopulmonary bypass. Ann Thorac Surg. 2001; 71: 745-54
|
|
|
25) Aoki M, Jonas RA, Nomura F, et al. Aprotinin enhances acute recovery of cerebral metabolism after circulatory arrest. Circulation. 1993; 86: S182
|
|
|
26) Kahn MMH, Gikakis N, Miyamoto S, et al. Aprotinin inhibits thrombin formation and monocyte tissue factor in simulated cardio-pulmonary bypass. Ann Thorac Surg. 1999; 68: 473-8
|
|
|
27) Toyama S, Hatori F, Shimizu, et al. A neutrophil elastase inhibitor, sivelestat, improved respiratory and cardiac function in pediatric cardiovascular surgery with cardiopulmonary bypass. J Anesth. 2008; 22: 341-46
|
|
|
28) Ando M, Murai T, Takahashi Y. The effects of sivelestat sodium on post-cardiopulmonary bypass acute lung injury in a neonatal piglet model. ICVTS. 2008; 7: 785-88
|
|
|
29) Hyllner M, Arnestad JP, Bengtson JP, et al. Complement activation during storage of whole blood, red cells, plasma, and byffy coat. Transfusion. 1997; 37: 264-8
|
|
|
30) Jacobi KE, Wanke C, Jacobi A, et al. Determination of eicosanoid and cytokine production in salvaged blood, stored red blood cell concentrates, and whole blood. J Clin Anesth. 2000; 12: 94-9
|
|
|
31) Hyllner M. Tylman M, Bengtson JP, et al. Complement activation in prestorage leucocyte-filtered plasma. Transfu Med. 2004; 14: 45-52
|
|
|
32) Sakurai H, Maeda M, Murase M, et al. Hemofiltration removes bradykinin generated in the priming blood in cardiopulmonary bypass during circulation. Ann Thorac Cardiovasc Surg. 1998; 4: 59
|
|
|
33) 高橋幸宏. 人工心肺技術の進歩と無輸血手術(小児). In: 細田瑳一, 篠山重威, 北村惣一郎, 監修. 心臓病 診断と治療の最前線. 東京: 先端医療技術研究所; 2004. p.229-36
|
|
|
34) Hickey E, Karamlou T, Ungerleider RM. Effects of circuit miniaturization in reducing inflammatory response to infant cardiopulmonary bypass by elimination of allogeneic blood products. Ann Thorac Surg. 2006; 81: S2367-72
|
|
|
35) 高橋雅彦. 輸血副作用の基礎知識. 薬局. 2004; 55: 54-62
|
|
|
36) Bando K, Turrentine MW, Vijay P, et al. Effect of modified ultrafiltration in high-risk patients undergoing operations for congenital heart disease. Ann Thorac Surg. 1998; 66: 821-8
|
|
|
37) Journois D, Israel-Biet D, Pouard P, et al. High-volume, zero-balanced hemodilution to reduce delayed inflammatory response to cardio-pulmonary bypass in children. Anesthesiology. 1996; 85: 965-76
|
|
|
38) Naik SK, Knight A, Elliott MJ. A successful modification of ultrafiltration for cardiopulmonary bypass in children. Perfusion. 1991; 6: 41-50
|
|
|
39) Naik SK, Knight A, Elliott MJ. A prospective randomized study of a modified technique of ultrafiltration during pediatric open-heart surgery. Circulation. 1991; 84 Suppl: III-422-31
|
|
|
40) Naik SK, Balaji S, Elliot MJ. Modified ultrafiltration improves hemodynamics after cardiopulmonary bypass in children. [abstract]. J Am Coll Cardiol. 1993; 19: 37
|
|
|
41) Davies MJ, Nguyen K, Gaynor JW, et al. Modified ultrafiltration improves left ventricular systolic function in infants after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1998; 1115: 361-70
|
|
|
42) Chaturvedi RR, Shore DF, White PA, et al. Modified ultrafiltration improves global left ventricular systolic function after open-heart surgery in infants and children. Eur J Cardiothorac Surg. 1999; 15: 742-6
|
|
|
43) Koutlas TC, Gaynor JW, Nicolson SC, et al. Modified ultrafiltration reduces postoperative morbidity after cavopulmonary connection. Ann Thorac Surg. 1997; 64: 37-43
|
|
|
44) Daggett CW, Lodge AJ, Scarborough JE, et al. Modified ultrafiltration versus conventional ultrafiltration: a randomized prospective study in neonatal piglets. J Thorac Cardiovasc Surg. 1998; 115: 336-42
|
|
|
45) Bando K, Vijay P, Sharp TG, et al. Dilutional and modified ultrafiltration reduces pulmonary hypertension after operations for congenital heart disease: a prospective randomized study. J Thorac Cardiovasc Sur. 1998; 115: 517-27
|
|
|
46) Journois D, Pouard P, Greeley WJ, et al. Hemofiltration during cardiopulmonary bypass in pediatric cardiac surgery. Anesthesiology. 1994; 81: 1181-9
|
|
|
47) Koutlas TC, Gaynor JW, Nicolson SC, et al. Modified ultrafiltration reduces postoperative morbidity after cavopulmonary connection. Ann Thorac Surg. 1997; 64; 37-43
|
|
|
48) Meliones JN, Gayner JW, Wilson BG, et al. Modified ultrafiltration reduces airway pressures and improves lung compliance after congenital heart surgery. J Am Coll Cardiol. 1995; 25: 271
|
|
|
49) Skaryak LA, Kirshbom PM, Dibernardo LR, et al. Modified ultrafiltration improves cerebral metabolic recovery after circulatory arrest. J Thorac Cardiovasc Surg. 1995; 109: 744-52
|
|
|
50) Yokoyama K, Takabayashi S, Komada T, et al. Removak of prostaglandein E2 and increased intraoperative blood pressuer during modified ultrafiltration in prdiatric cardiac surgery. J Thorac Cardiovasc Surg. 2009; 137: 730-5
|
|
|
51) Elliott MJ. Modified ultrafiltration and open heart surgery in children. Paediatr Anaesth. 1999; 9: 1-5
|
|
|
52) Wang MJ, Chiu IS, Hsu CM, et al. Efficacy of ultrafiltration in removing inflammatory mediators during pediatric cardiac operations. Ann Thorac Surg. 1996; 61: 651-6
|
|
|
53) Gaynor JW. Use of modifies ultrafiltration after repair of congenital heart defects. Semin Thorac Cardiovasc Surg. 1998 1: 81-90
|
|
|
54) 高橋幸宏. 先天性心疾患手術. In: 小川 龍, 坂本篤裕, 高尾あや子, 編. 最近の心臓手術と麻酔管理のながれ. 東京: 真興交易医書出版部; 1999. p.143
|
|
|
55) Gaynor JW. Use of ultrafiltration during and after cardiopulmonary bypass in children. J Thorac Cardiovasc Surg. 2001; 122: 209-11
|
|
|
56) Johnson MH. Functional brain development in humans. Nat Rev Neurosci. 2001; 2: 475-83
|
|
|
57) Galli KK, Zimmerman RA, Jarvik GP, et al. Periventricular leukpmalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg. 2004; 127: 692-704
|
|
|
58) Mahle WT, Tavani F, Zimmerman, et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation. 2002; 106 Suppl 12: 1109-14
|
|
|
59) Dent CL, Spaeth JP, Jones BV, et al. Brain magnetic resonance imaging abnormalities after Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg. 2006; 131: 190-7
|
|
|
60) Mahle WT. Neurologic and cognitive outcomes in children with congenital heart disease. Curr Opin Pediatr. 2001; 13: 482-6
|
|
|
61) Wernovsky G, Shillngford AJ, Gaynor. Central nervous system outcomes in children with complex congenital heart disease. Curr Cardiol. 2005; 20: 94-9
|
|
|
62) Wernovsky G, Stiles KM, Gauvreau, et al. Cognitive development after the Fontan operation. Circulaiton. 2000; 102: 883-9
|
|
|
63) Mahle WT, Clancy RR, Moss EM, et al. Neurodevelopment outcome and lifestyle assessment in school-aged and adolescent children with hypoplastic left heart syndrome. Pediatrics. 2000; 105: 1082-9
|
|
|
64) Karl TR, Hall S, Ford G, et al. Arterial switch with full-flow cardiopulmonary bypass and limited circulatory arrest: neurodevelopmental outcome. J Thorac Cardiovasc Surg. 2004; 127: 213-22
|
|
|
65) Hovels-Gurich HH, Seghaye MC, Schnitker R, et al. Long-term neurodevelopmental outcomes in school-aged children after switch operation. J Thorac Cardiovasc Surg. 2002; 124: 448-8
|
|
|
66) Bellinger DC, Wypij D, duDuplessis AJ, et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: The Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg. 2003; 126: 1385-96
|
|
|
67) Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative neurologic effects of hypoyhermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med. 1993; 329: 1057-64
|
|
|
68) Wypij D, Newburger JW, Rappaport LA, et al. The effect of duration of deep hypothermic circulatory arrestin infant heart surgery on late neurodevelopment: The Boston Circulatory arrest Trial. J Thorac Cardiovasc Surg. 2003; 126: 1397-403
|
|
|
69) Langley S, Chai PJ, Miller SE, et al. Intermittent perfusion protects the brain during deep hypothermic circulatory arrest. Ann Thorac Surg. 1999; 68: 4-13
|
|
|
70) Loepke AW, Golden JA, McCann JC, et al. Injury pattern of the neonatal brain after hypothermic low-flow cardiopulmonary bypass in a piglet model. Anesth Analg. 2005; 101: 340-8
|
|
|
71) 角 秀秋. 新生児, 乳児体外循環. In: 四津良平, 編. 体外循環と補助循環 第19回教育セミナー. 日本人工臓器学会; 2003. p.79
|
|
|
72) Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: Results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003; 126: 1765-74
|
|
|
73) Bellinger DC, Wypij D, du Plessis AJ, et al. Developmental and neurologic effects of alpha-stat versus PH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2001; 121: 374-83
|
|
|
74) Andropoulos DB, Stayer SA, Nelson DP, et al. Optimized bypass strategy eliminate periventricular leukomalacia following neonatal cardiac surgery. Anesthesiology. 2007; 107: A209
|
|
|
75) Nelson DP, Andropoulos DB, Fraser CD. Perioperative neuroprotective strategies. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2008: 49-56
|
|
|
76) Dent CL, Spaeth JP, Jones BV, et al. Brain magnetic resonance imaging abnormalitiews after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg. 2006; 131: 190-7
|
|
|
77) Austin EH, Edmond HI, Auden SM, et al. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg. 1997; 114: 707-17
|
|
|
78) Kurth CD, Steven JM, Nicolson SC. Cerebral oxygenation during pediatric cardiac surgery using deep hypoyhermic circulatory arrest. Anesthesiology. 1995; 82: 74-82
|
|
|
79) Ing RJ, Lawson DS, Jaggers J, et al. Detection of unintentional partial superior vena cava occlusion during a bidirectional cavopulmonary anastomosis. J Cardiothorac Vasc Anesth. 2004; 18: 472-4
|
|
|
80) Gottlieb EA, Fraser CD Jr, Andropoulos DB, et al. Bilateral monitoring of cerebral oxygen saturation results in recognition of aortic cannula malposition during pediatric congenital heart surgery. Paediatr Anaesth. 2006; 16: 787-9
|
|
|
81) Sakamoto T, Duebener LF, Laussen PC, et al. Cerebral ischemia caused by obstructed superior vena cava cannula is detected by near-infrared spectroscopy. J Cardiothorac Vasc Anesth. 2004; 18: 293-303
|
|
|
82) Kem FH, Ungerleider RM, Schulman SR, et al. Comparing two strategies of cardiopulmonary bypass cooling on jugular venous oxygen saturation in neonates and infants. Ann Thorac Surg. 1995; 60: 1198-202
|
|
|
83) Shen I, Giacomuzzi C, Ungerleider RM. Current strategies for optimizing the use of cardiopulmonary bypass in neonate and infants. Ann Thorac Surg. 2003; 75: S729-34
|
|
|
84) Culley DJ, Xie Z, Crosby G. General anesthetic-induced neurotoxicity: an emerging problem for the young and old? Curr Opin Anaesthesiol. 2007; 20: 408-13
|
|
|
85) du Plessis AJ. Mechanisms of brain injury during infant cardiac surgery. Semin Pediatr Neurol. 1999; 6: 32-47
|
|
|
86) Hoffman GM. Detection and prevention of neurologic injury in the intensive care unit. Cardiol Young. 2005; 15 Suppl 1: 149-53
|
|
|
87) OʼBrien JJ, Butterworth J, Hammon JW, et al. Cerebral emboli during cardiac surgery in children. Anesthesiology. 1997; 87: 1063-9
|
|
|
88) Mahle WT. Neurologic and cognitive outcomes in children with congenital heart disease. Curr Opin Pediatr. 2001; 13: 482-6
|
|
|
89) Wemovsky G. Outcomes regarding the central nervous system in children with complex congenital cardiac malformation. Cardiol Young. 2005; 15 Suppl 1: 132-3
|
|
|
90) Hsia TY, Gruber PJ. Factors influencing neurologic outcome after neonatal cardiopulmonary bypass: What we can and cannot control. Ann Thorac Surg. 2006; 81: S2381-8
|
|
|
91) Visconti KJ, Bichell DP, Jonas RA, et al. Developmental outcome after surgical versus interventional closure of secundum atrial defectin children. Circulation. 1999; 100 Suppl 19: II145-50
|
|
|
92) Prondzinsky R, Knupfer A, Loppnow H, et al. Surgical trauma affects the proinflammatory status after cardiac surgery to a higher degree than cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2005; 129: 760-6
|
|
|
93) Ando M, Takahashi Y, Kikuchi T. Short operation time: An important element to reduce operative invasiveness in pediatric cardiac surgery. Ann Thorac Surg. 2005; 80: 631-5
|
|
|