1) Wang W, Chen JS, Zucker IH. Carotid sinus baroreceptor sensitivity in experimental heart failure. Circulation. 1990; 81: 1959-66
|
|
|
2) Chua TP, Clark AL, Amadi AA, et al. Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol. 1996; 27: 650-7
|
|
|
3) Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009; 54: 375-85
|
|
|
4) Leenen FH. Brain mechanisms contributing to sympathetic hyperactivity and heart failure. Circ Res. 2007; 101: 221-3
|
|
|
5) Ito K, Kimura Y, Hirooka Y, et al. Activation of Rho-kinase in the brainstem enhances sympathetic drive in mice with heart failure. Auton Neurosci. 2008; 142: 77-81
|
|
|
6) Hirooka Y. Brain perivascular macrophages and central sympathetic activation after myocardial infarction: heart and brain interaction. Hypertension. 2010; 55: 610-1
|
|
|
7) Snider WD. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell. 1994; 77: 627-38
|
|
|
8) Heumann R, Korsching S, Scott J, et al. Relationship between levels of nerve growth factor (NGF) and its messenger RNA in sympathetic ganglia and peripheral target tissues. EMBO J. 1984; 3: 3183-9
|
|
|
9) Ieda M, Fukuda K, Hisaka Y, et al. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression. J Clin Invest. 2004; 113: 876-84
|
|
|
10) Kimura K, Ieda M, Kanazawa H, et al. Cardiac sympathetic rejuvenation: a link between nerve function and cardiac hypertrophy. Circ Res. 2007; 100: 1755-64
|
|
|
11) Kimura K, Kanazawa H, Ieda M, et al. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure. Auton Neurosci. 2010; 156: 27-35
|
|
|
12) Rana OR, Saygili E, Meyer C, et al. Regulation of nerve growth factor in the heart: the role of the calcineurin-NFAT pathway. J Mol Cell Cardiol. 2009; 46: 568-78
|
|
|
13) Chidsey CA, Kaiser GA, Sonnenblick EH, et al. Cardiac norephinephrine stores in experimental heart failure in the dog. J Clin Invest. 1964; 43: 2386-93
|
|
|
14) Himura Y, Felten SY, Kashiki M, et al. Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure. Circulation. 1993; 88: 1299-1309
|
|
|
15) Liang CS, Yatani A, Himura Y, et al. Desipramine attenuates loss of cardiac sympathetic neurotransmitters produced by congestive heart failure and NE infusion. Am J Physiol Heart Circ Physiol. 2003; 284: H1729-36
|
|
|
16) Patterson PH, Chun LL. The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons. Proc Natl Acad Sci U S A. 1974; 71: 3607-10
|
|
|
17) Yamamori T, Fukada K, Aebersold R, et al. The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor. Science. 1989; 246: 1412-6
|
|
|
18) Kanazawa H, Ieda M, Kimura K, et al. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J Clin Invest. 2010; 120: 408-21
|
|
|
19) Oh YS, Jong AY, Kim DT, et al. Spatial distribution of nerve sprouting after myocardial infarction in mice. Heart Rhythm. 2006; 3: 728-36
|
|
|
20) Ishise H, Asanoi H, Ishizaka S, et al. Time course of sympathovagal imbalance and left ventricular dysfunction in conscious dogs with heart failure. J Appl Physiol. 1998; 84: 1234-41
|
|
|
21) Wang Z, Shi H, Wang H. Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol. 2004; 142: 395-408
|
|
|
22) Yang B, Lin H, Xu C, et al. Choline produces cytoprotective effects against ischemic myocardial injuries: evidence for the role of cardiac m3 subtype muscarinic acetylcholine receptors. Cell Physiol Biochem. 2005; 16: 163-74
|
|
|
23) Olshansky B, Sabbah HN, Hauptman PJ, et al. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation. 2008; 118: 863-71
|
|
|
24) Kakinuma Y, Ando M, Kuwabara M, et al. Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1alpha. FEBS Lett. 2005; 579: 2111-8
|
|
|
25) Ando M, Katare RG, Kakinuma Y, et al. Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation. 2005; 112: 164-70
|
|
|
26) Schwartz PJ, De Ferrari GM. Vagal stimulation for heart failure: background and first in-man study. Heart Rhythm. 2009; 6: S76-81
|
|
|
27) Cao JM, Fishbein MC, Han JB, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000; 101: 1960-9
|
|
|
28) Bristow MR, Minobe W, Rasmussen R, et al. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest. 1992; 89: 803-15
|
|
|