1) Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium. Nature. 2001; 410: 701-5
|
|
|
2) Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not trans-differentiate into cardiac myocytes in myocardial infarcts. Nature. 2004; 428: 664-8
|
|
|
3) Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 2004; 10: 494-501
|
|
|
4) Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med. 2007; 167: 989-97
|
|
|
5) Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation. 2003; 107: 461-8
|
|
|
6) Yoon CH, Koyanagi M, Iekushi K, et al. Mechanism of improved cardiac function after bone marrow mononuclear cell therapy. Circulation. 2010; 121: 2001-11
|
|
|
7) Takahashi M, Li TS, Suzuki R, et al. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol. 2006; 291: H886-93
|
|
|
8) Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006; 98: 1414-21
|
|
|
9) Cho HJ, Lee N, Lee JY, et al. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med. 2007; 204: 3257-69
|
|
|
10) Tateno K, Minamino T, Toko H, et al. Critical roles of muscle-secreted angiogenic factors in therapeutic neovascularization. Circ Res. 2006; 98: 1194-202
|
|
|
11) Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myo-cardial infarction. Proc Natl Acad Sci U S A. 2005; 102: 11474-9
|
|
|
12) Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in post-infarcted rat myocardium: short- and long-term effects. Circulation. 2005; 112: 214-23
|
|
|
13) Nagaya N, Kangawa K, Itoh T, et al. Trans-plantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation. 2005; 112: 1128-35
|
|
|
14) Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005; 111: 150-6
|
|
|
15) Noiseux N, Gnecchi M, Lopez-Ilasaca M, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther. 2006; 14: 840-50
|
|
|
16) Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ische-mic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005; 11: 367-8
|
|
|
17) Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protec-tion and functional improvement. FASEB J. 2006; 20: 661-9
|
|
|
18) Mirotsou M, Zhang Z, Deb A, et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A. 2007; 104: 1643-8
|
|
|
19) Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A. 2003; 100: 8407-11
|
|
|
20) Oyagi S, Hirose M, Kojima M, et al. Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol. 2006; 44: 742-8
|
|
|
21) Ninichuk V, Gross O, Segerer S, et al. Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int. 2006; 70: 121-9
|
|
|
22) Ohnishi S, Yasuda T, Kitamura S, et al. Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mono-nuclear cells. Stem Cells. 2007; 25: 1166-77
|
|
|
23) Ohnishi S, Sumiyoshi H, Kitamura S, et al. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett. 2007; 581: 3961-6
|
|
|
24) Xu X, Xu Z, Xu Y, et al. Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron Artery Dis. 2005; 16: 245-55
|
|
|
25) Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005; 105: 1815-22
|
|
|
26) Ohnishi S, Yanagawa B, Tanaka K, et al. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol. 2007; 42: 88-97
|
|
|
27) Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardio-myocytes after cardiac grafting. J Mole Cell Cardiol. 2002; 34: 241-9
|
|
|
28) Sekiya N, Matsumiya G, Miyagawa S, et al. Layered implantation of myoblast sheets attenu-ates adverse cardiac remodeling of the infarcted heart. J Thorac Cardiovasc Surg. 2009; 138: 985-93
|
|
|
29) Kondoh H, Sawa Y, Miyagawa S, et al. Longer preservation of cardiac performance by sheet-shaped myoblast implantation in dilated cardio-myopathic hamsters. Cardiovasc Res. 2006; 69: 466-75
|
|
|
30) Hata H, Matsumiya G, Miyagawa S, et al. Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg. 2006; 132: 918-24
|
|
|
31) Perez-Ilzarbe M, Agbulut O, Pelacho B, et al. Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. Eur J Heart Fail. 2008; 10: 1065-72
|
|
|
32) Menasché P, Alfieri O, Janssens S, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast trans-plantation. Circulation. 2008; 117: 1189-200
|
|
|
33) Suzuki K, Murtuza B, Beauchamp JR, et al. Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J. 2004; 18: 1153-5
|
|
|
34) Memon IA, Sawa Y, Fukushima N, et al. Repair of impaired myocardium by means of implanta-tion of engineered autologous myoblast sheets. J Thorac Cardiovasc Surg. 2005; 130: 1333-41
|
|
|
35) Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009; 324: 98-102
|
|
|
36) Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003; 114: 763- 76
|
|
|
37) Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A. 2003; 100: 12313-8
|
|
|
38) Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem. 2004; 279: 11384-91
|
|
|
39) Oyama T, Nagai T, Wada H, et al. Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol. 2007; 176: 329-41
|
|
|
40) Laugwitz KL, Moretti A, Lam J, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardio-myocyte lineages. Nature. 2005; 433: 647-53
|
|
|
41) Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004; 95: 911-21
|
|
|
42) Matsuura K, Honda A, Nagai T, et al. Trans-plantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest. 2009; 119: 2204-17
|
|
|
43) Chimenti I, Smith RR, Li TS, et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res. 2010; 106: 971-80
|
|
|
44) Maxeiner H, Krehbiehl N, Müller A, et al. New insights into paracrine mechanisms of human cardiac progenitor cells. Eur J Heart Fail. 2010; 12: 730-7
|
|
|
45) Urbanek K, Rota M, Cascapera S, et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res. 2005; 97: 663-73
|
|
|
46) Reinecke H, Minami E, Zhu WZ, et al. Car-diogenic differentiation and transdifferentiation of progenitor cells. Circ Res. 2008; 103: 1058-71
|
|
|
47) Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature. 2008; 453: 322-9
|
|
|
48) Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861-72
|
|
|
49) Kouskoff V, Lacaud G, Schwantz S, et al. Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc Natl Acad Sci U S A. 2005; 102: 13170-5
|
|
|
50) Yuasa S, Itabashi Y, Koshimizu U, et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryo-nic stem cells. Nat Biotechnol. 2005; 23: 607-11
|
|
|
51) Hattori F, Chen H, Yamashita H, et al. Non-genetic method for purifying stem cell-derived cardiomyocytes. Nat Methods. 2010; 7: 61-6
|
|
|
52) Yan P, Nagasawa A, Uosaki H, et al. Cyclo-sporin-A potently induces highly cardiogenic progenitors from embryonic stem cells. Biochem Biophys Res Commun. 2009; 379: 115-20
|
|
|
53) Hidaka K, Shirai M, Lee JK, et al. The cellular prion protein identifies bipotential cardio-myogenic progenitors. Circ Res. 2010; 106: 111-9
|
|
|
54) Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007; 25: 1015-24
|
|
|
55) Christoforou N, Oskouei BN, Esteso P, et al. Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PLoS One. 2010; 5: e11536
|
|
|
56) Nelson TJ, Martinez-Fernandez A, Yamada S. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation. 2009; 120: 408-16
|
|
|
57) van Laake LW, van Donselaar EG, Monshouwer-Kloots J, et al. Extracellular matrix formation after transplantation of human embryonic stem cell-derived cardiomyocytes. Cell Mol Life Sci. 2010; 67: 277-90
|
|
|
58) Singla DK, Hacker TA, Ma L, et al. Trans-plantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol. 2006; 40: 195-200
|
|
|
59) van Laake LW, Passier R, den Ouden K, et al. Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Res. 2009; 3: 106-12
|
|
|
60) Crisostomo PR, Abarbanell AM, Wang M, et al. Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. Am J Physiol Heart Circ Physiol. 2008; 295: H1726-35
|
|
|
61) Fatma S, Selby DE, Singla RD, et al. Factors released from embryonic stem cells stimulate c-kit-FLK-1 (+ve) progenitor cells and enhance neovascularization. Antioxid Redox Signal. 2010; 13: 1875-65
|
|
|
62) Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ Res. 2008; 102: 1319-30
|
|
|
63) Li TS, Furutani A, Takahashi M, et al. Impaired potency of bone marrow mononuclear cells for inducing therapeutic angiogenesis in obese diabetic rats. Am J Physiol Heart Circ Physiol. 2006; 290: H1362-9
|
|
|
64) Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008; 103: 1204-19
|
|
|