医中誌リンクサービス


文献リスト

1) Basson M. Cardiovascular Disease. Nature. 2008; 451: 903-4
CrossRef
医中誌リンクサービス
2) Bruneau BG. The developmental genetics of congenital heart disease. Nature. 2008; 451: 943-8
PubMed CrossRef
医中誌リンクサービス
3) Laugwitz KL, Moretti A, Caron L, et al. Islet1 cardiovascular progenitors: a single source for heart lineages? Development. 2008; 135: 193-205
PubMed
医中誌リンクサービス
4) Wu SM. Mesp1 at the heart of mesoderm lineage specification. Cell Stem Cell. 2008; 3: 1-2
PubMed CrossRef
医中誌リンクサービス
5) Harvey RP. Regenerative medicine: Heart redevelopment. Nature. 2010; 467: 39-40
PubMed CrossRef
医中誌リンクサービス
6) Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010; 142: 375-86
PubMed CrossRef
医中誌リンクサービス
7) Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature. 2009; 459: 708-11
PubMed CrossRef
医中誌リンクサービス
8) Hang CT, Yang J, Han P, et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature. 2010; 466: 62-7
PubMed CrossRef
医中誌リンクサービス
9) Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development. 1991; 113: 891-911
PubMed
医中誌リンクサービス
10) Tam PP, Parameswaran M, Kinder SJ, et al. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development. 1997; 124: 1631-42
PubMed
医中誌リンクサービス
11) Kirby M. Cardiac Development. Oxford: Oxford University Press; 2007
医中誌リンクサービス
12) Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005; 6: 826-35
PubMed CrossRef
医中誌リンクサービス
13) Hansson EM, Lindsay ME, Chien KR. Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell. 2009; 5: 364-77
PubMed CrossRef
医中誌リンクサービス
14) Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell. 2006; 126: 1037-48
PubMed CrossRef
医中誌リンクサービス
15) 竹内 純, Bruneau BG. Molecularな視点から心臓発生, 疾患のメカニズムを紐解く~クロマチンリモデリングファクターとモディフィケイションファクター~. 細胞工学. 2007; 26: 799-805
医学中央雑誌刊行会
医中誌リンクサービス
16) Bruneau BG. Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res. 2002; 90: 509-19
PubMed CrossRef
医中誌リンクサービス
17) Vincent SD, Buckingham ME. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol. 2010; 90: 1-41
PubMed CrossRef
医中誌リンクサービス
18) 竹内 純, 小柴和子. 心臓誘導と心筋分化—マスター因子は存在するか. 医学のあゆみ. 2009; 229: 711-9
医学中央雑誌刊行会  PierOnline
医中誌リンクサービス
19) Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell. 2001; 1: 435-40
PubMed CrossRef
医中誌リンクサービス
20) Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol. 2001; 238: 97-109
PubMed CrossRef
医中誌リンクサービス
21) Waldo KL, Kumiski DH, Wallis KT, et al. Conotruncal myocardium arises from a secondary heart field. Development. 2001; 128: 3179-88
PubMed
医中誌リンクサービス
22) Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003; 5: 877-89
PubMed CrossRef
医中誌リンクサービス
23) Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992; 20: 1391-6
PubMed CrossRef
医中誌リンクサービス
24) Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1993; 392: 293-6
PubMed
医中誌リンクサービス
25) Kirby ML, Waldo KL. Role of neural crest in congenital heart disease. Circulation. 1990; 82: 332-40
PubMed
医中誌リンクサービス
26) Wei Y, Mikawa T. Fate diversity of primitive streak cells during heart field formation in ovo. Dev Dyn. 2000; 219: 505-13
PubMed CrossRef
医中誌リンクサービス
27) Cai CL, Martin JC, Sun Y, et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008; 454: 104-8
PubMed CrossRef
医中誌リンクサービス
28) Zhou B, Ma Q, Rajagopal S, Wu SM, et al. Epicardial progenitors contribute to the cardio-myocyte lineage in the developing heart. Nature. 2008; 454: 109-13
PubMed CrossRef
医中誌リンクサービス
29) Saga Y, Miyagawa-Tomita S, Takagi A, et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development. 1999; 126: 3437-47
PubMed
医中誌リンクサービス
30) Saga Y, Kitajima S, Miyagawa-Tomita S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med. 2000; 10: 345-52
PubMed CrossRef
医中誌リンクサービス
31) Inman KE, Downs KM. Localization of Brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation. Gene Expr Patterns. 2006; 6: 783-93
PubMed CrossRef
医中誌リンクサービス
32) Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006; 11: 723-32
PubMed CrossRef
医中誌リンクサービス
33) Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 2006; 127: 1137-50
PubMed CrossRef
医中誌リンクサービス
34) Wu SM. Mesp1 at the heart of mesoderm lineage specification. Cell Stem Cell. 2008; 3: 1-2
PubMed CrossRef
医中誌リンクサービス
35) Prall OW, Menon MK, Solloway MJ, et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell. 2007; 128: 947-59
PubMed CrossRef
医中誌リンクサービス
36) Sun Y, Liang X, Najafi N, et al. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol. 2007; 304: 286-96
PubMed CrossRef
医中誌リンクサービス
37) Brown CB, Wenning JM, Lu MM, et al. Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardio-vascular development in the mouse. Dev Biol. 2004; 267: 190-202
PubMed CrossRef
医中誌リンクサービス
38) Verzi MP, McCulley DJ, De Val S, et al. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol. 2005; 287: 134-45
PubMed CrossRef
医中誌リンクサービス
39) Brade T, Gessert S, Kühl M, et al. The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development. Dev Biol. 2007; 311: 297-310
PubMed CrossRef
医中誌リンクサービス
40) de Pater E, Clijsters L, Marques SR, et al. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development. 2009; 136: 1633-41
PubMed CrossRef
医中誌リンクサービス
41) Xu H, Morishima M, Wylie JN, et al. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development. 2004; 131: 3217-27
PubMed CrossRef
医中誌リンクサービス
42) Hoogaars WM, Engel A, Brons JF, et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 2007; 21: 1098-112
PubMed CrossRef
医中誌リンクサービス
43) Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001; 106: 709-21
PubMed CrossRef
医中誌リンクサービス
44) Koshiba-Takeuchi K, Takeuchi JK, Arruda EP, et al. Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nat Genet. 2006; 38: 175-83
PubMed CrossRef
医中誌リンクサービス
45) Koshiba-Takeuchi K, Mori AD, Kaynak BL, et al. Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature. 2009; 461: 95-8
PubMed CrossRef
医中誌リンクサービス
46) Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K, et al. Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development. 2005; 132: 2463-74
PubMed CrossRef
医中誌リンクサービス
47) Stennard FA, Costa MW, Lai D, et al. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development. 2005; 132: 2451-62
PubMed CrossRef
医中誌リンクサービス
48) Stennard FA, Harvey RP. T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development. 2005; 132: 4897-910
PubMed CrossRef
医中誌リンクサービス
49) Hoogaars WM, Barnett P, Moorman AF, et al. T-box factors determine cardiac design. Cell Mol Life Sci. 2007; 64: 646-60
PubMed CrossRef
医中誌リンクサービス
50) Hiroi Y, Kudoh S, Monzen K, et al. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet. 2001; 28: 276-80
PubMed CrossRef
医中誌リンクサービス
51) Gary V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2004; 424: 443-7
PubMed
医中誌リンクサービス
52) Dodou E, Verzi MP, Anderson JP, et al. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development. 2004; 131: 3931-42
PubMed CrossRef
医中誌リンクサービス
53) von Both I, Silvestri C, Erdemir T, et al. Foxh1 is essential for development of the anterior heart field. Dev Cell. 2004; 7: 331-45
PubMed CrossRef
医中誌リンクサービス
54) Lickert H, Takeuchi JK, Von Both I, et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 2004; 432: 107-12
PubMed CrossRef
医中誌リンクサービス
55) Pashmforoush M, Lu JT, Chen H, et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell. 2004; 117: 373-86
PubMed CrossRef
医中誌リンクサービス
56) McFadden DG, Barbosa AC, Richardson JA, et al. The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development. 2005; 132: 189-201
PubMed
医中誌リンクサービス
57) Moses KA, DeMayo F, Braun RM, et al. Embryonic expression of an Nkx2-5/Cre gene using ROSA26 reporter mice. Genesis. 2001; 31: 176-80
PubMed CrossRef
医中誌リンクサービス
58) Ma Q, Zhou B, Pu WT. Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev Biol. 2008; 323: 98-104
PubMed CrossRef
医中誌リンクサービス
59) Rajagopal SK, Ma Q, Obler D, et al. Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol. 2007; 43: 677-85
PubMed CrossRef
医中誌リンクサービス
60) Maitra M, Schluterman MK, Nichols HA, et al. Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol. 2009; 326: 368-77
PubMed CrossRef
医中誌リンクサービス
61) Xin M, Davis CA, Molkentin JD, et al. A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proc Natl Acad Sci U S A. 2006; 103: 11189-94
PubMed CrossRef
医中誌リンクサービス
62) Peterkin T, Gibson A, Patient R. Redundancy and evolution of GATA factor requirements in development of the myocardium. Dev Biol. 2007; 311: 623-35
PubMed CrossRef
医中誌リンクサービス
63) Holtzinger A, Evans T. Gata5 and Gata6 are functionally redundant in zebrafish for speci-fication of cardiomyocytes. Dev Biol. 2007; 312: 613-22
PubMed CrossRef
医中誌リンクサービス
64) Zhao R, Watt AJ, Battle MA, et al. Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice. Dev Biol. 2008; 317: 614-9
PubMed CrossRef
医中誌リンクサービス
65) Agnihotri S, Wolf A, Picard D, et al. GATA4 is a regulator of astrocyte cell proliferation and apoptosis in the human and murine central nervous system. Oncogene. 2009; 28: 3033-46
PubMed CrossRef
医中誌リンクサービス
66) Haworth KE, Kotecha S, Mohun TJ, et al. GATA4 and GATA5 are essential for heart and liver development in Xenopus embryos. BMC Dev Biol. 2008; 8: 74
PubMed
医中誌リンクサービス
67) Watt AJ, Zhao R, Li J, et al. Development of the mammalian liver and ventral pancreas is dependent on GATA4. BMC Dev Biol. 2007; 7: 37
PubMed
医中誌リンクサービス
68) Asai R, Kurihara Y, Fujisawa K, et al. Endothelin receptor type A expression defines a distinct cardiac subdomain within the heart field and is later implicated in chamber myocardium formation. Development. 2010; 137: 3823-33
PubMed CrossRef
医中誌リンクサービス
69) Männer J, Pérez-Pomares JM, Macías D, et al. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs. 2001; 169: 89-103
PubMed CrossRef
医中誌リンクサービス
70) Wessels A, Pérez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004; 276: 43-57
PubMed
医中誌リンクサービス
71) Moretti A, Caron L, Nakano A, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diver-sification. Cell. 2006; 127: 1151-65
PubMed CrossRef
医中誌リンクサービス
72) Sun Y, Liang X, Najafi N, et al. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol. 2007; 304: 286-96
PubMed CrossRef
医中誌リンクサービス
73) Zhou B, von Gise A, Ma Q, et al. Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun. 2008; 375: 450-3
PubMed CrossRef
医中誌リンクサービス
74) Zhou B, Ma Q, Rajagopal S, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008; 454: 109-13
PubMed CrossRef
医中誌リンクサービス
75) Martínez-Estrada OM, Lettice LA, Essafi A, et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat Genet. 2010; 42: 89-93
PubMed CrossRef
医中誌リンクサービス
76) Ishii Y, Garriock RJ, Navetta AM, et al. BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Dev Cell. 2010; 19: 307-16
PubMed CrossRef
医中誌リンクサービス
77) Tomanek RJ, Ratajska A, Kitten GT, et al. Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis. Dev Dyn. 1999; 215: 54-61
PubMed CrossRef
医中誌リンクサービス
78) Wada AM, Reese DE, Bader DM. Bves: prototype of a new class of cell adhesion molecules expressed during coronary artery development. Development. 2001; 128: 2085-93
PubMed
医中誌リンクサービス
79) Moretti A, Bellin M, Jung CB, et al. Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J. 2010; 24: 700-11
PubMed CrossRef
医中誌リンクサービス
80) Kawai T, Takahashi T, Esaki M, et al. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ J. 2004; 68: 691-702
医学中央雑誌刊行会  PubMed CrossRef J-Stage
医中誌リンクサービス
81) Monzen K, Shiojima I, Hiroi Y, et al. Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2. 5 and GATA-4. Mol Cell Biol. 1999; 19: 7096-105
PubMed
医中誌リンクサービス
82) Yuasa S, Itabashi Y, Koshimizu U, et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embry-onic stem cells. Nat Biotechnol. 2005; 23: 607-11
PubMed CrossRef
医中誌リンクサービス
83) Kami D, Shiojima I, Makino H, et al. Gremlin enhances the determined path to cardiomyo-genesis. PLoS One. 2008; 3: e2407
PubMed CrossRef
医中誌リンクサービス
84) Wobus AM, Kaomei G, Shan J, et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances develop-ment of ventricular cardiomyocytes. J Mol Cell Cardiol. 1997; 29: 1525-39
PubMed CrossRef
医中誌リンクサービス
85) Lim JY, Kim WH, Kim J, et al. Involvement of TGF-beta1 signaling in cardiomyocyte differ-entiation from P19CL6 cells. Mol Cells. 2007; 24: 431-6
PubMed
医中誌リンクサービス
86) Lim DA, Tramontin AD, Trevejo JM, et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000; 28: 713-26
PubMed CrossRef
医中誌リンクサービス
87) Bondue A, Lapouge G, Paulissen C, et al. Mesp1 acts as a master regulator of multipotent cardio-vascular progenitor specification. Cell Stem Cell. 2008; 3: 69-84
PubMed CrossRef
医中誌リンクサービス
88) David R, Brenner C, Stieber J, et al. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol. 2008; 10: 338-45
PubMed CrossRef
医中誌リンクサービス
89) Lindsley RC, Gill JG, Murphy TL, et al. Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell. 2008; 3: 55-68
PubMed CrossRef
医中誌リンクサービス
90) Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008; 453: 524-8
PubMed CrossRef
医中誌リンクサービス
91) Zhu W, Shiojima I, Ito Y, et al. IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis. Nature. 2008; 454: 345-9
PubMed CrossRef
医中誌リンクサービス
92) Reiter JF, Alexander J, Rodaway A, et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 1999; 13: 2983-95
PubMed CrossRef
医中誌リンクサービス
93) Latinkić BV, Kotecha S, Mohun TJ. Induction of cardiomyocytes by GATA4 in Xenopus ecto-dermal explants. Development. 2003; 130: 3865-76
PubMed CrossRef
医中誌リンクサービス
94) Small EM, Warkman AS, Wang DZ, et al. Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development. 2005; 132: 987-97
PubMed CrossRef
医中誌リンクサービス
95) Takeuchi JK, Ohgi M, Koshiba-Takeuchi K, et al. Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development. 2003; 130: 5953-64
PubMed CrossRef
医中誌リンクサービス
96) Goetz SC, Brown DD, Conlon FL. TBX5 is required for embryonic cardiac cell cycle progression. Development. 2006; 133: 2575-84
PubMed CrossRef
医中誌リンクサービス
97) Yamada Y, Sakurada K, Takeda Y, et al. Single-cell-derived mesenchymal stem cells over-expressing Csx/Nkx2. 5 and GATA4 undergo the stochastic cardiomyogenic fate and behave like transient amplifying cells. Exp Cell Res. 2007; 313: 698-706
PubMed CrossRef
医中誌リンクサービス
98) Takeuchi JK, Lickert H, Bisgrove BW, et al. Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci U S A. 2007; 104: 846-51
PubMed CrossRef
医中誌リンクサービス
99) Zhu Y, Gramolini AO, Walsh MA, et al. Tbx5-dependent pathway regulating diastolic function in congenital heart disease. Proc Natl Acad Sci U S A. 2008; 105: 5519-24
PubMed CrossRef
医中誌リンクサービス
100) Yoshimura K, Kitagawa H, Fujiki R, et al. Distinct function of 2 chromatin remodeling complexes that share a common subunit, Williams syndrome transcription factor (WSTF). Proc Natl Acad Sci U S A. 2009; 106: 9280-5
PubMed CrossRef
医中誌リンクサービス
101) Monzen K, Ito Y, Naito AT, et al. A crucial role of a high mobility group protein HMGA2 in cardiogenesis. Nat Cell Biol. 2008; 10: 567-74
PubMed CrossRef
医中誌リンクサービス
102) Shirai M, Osugi T, Koga H, et al. The Polycomb-group gene Rae28 sustains Nkx2. 5/Csx expression and is essential for cardiac morpho-genesis. J Clin Invest. 2002; 110: 177-84
PubMed
医中誌リンクサービス
103) Nimura K, Ura K, Shiratori H, et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature. 2009; 460: 287-91
PubMed CrossRef
医中誌リンクサービス
104) Wang Z, Zhai W, Richardson JA, et al. Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev. 2004; 18: 3106-16
PubMed CrossRef
医中誌リンクサービス
105) Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663-76
PubMed CrossRef
医中誌リンクサービス
106) Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008; 455: 627-32
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp