1) Basson M. Cardiovascular Disease. Nature. 2008; 451: 903-4
|
|
|
2) Bruneau BG. The developmental genetics of congenital heart disease. Nature. 2008; 451: 943-8
|
|
|
3) Laugwitz KL, Moretti A, Caron L, et al. Islet1 cardiovascular progenitors: a single source for heart lineages? Development. 2008; 135: 193-205
|
|
|
4) Wu SM. Mesp1 at the heart of mesoderm lineage specification. Cell Stem Cell. 2008; 3: 1-2
|
|
|
5) Harvey RP. Regenerative medicine: Heart redevelopment. Nature. 2010; 467: 39-40
|
|
|
6) Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010; 142: 375-86
|
|
|
7) Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature. 2009; 459: 708-11
|
|
|
8) Hang CT, Yang J, Han P, et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature. 2010; 466: 62-7
|
|
|
9) Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development. 1991; 113: 891-911
|
|
|
10) Tam PP, Parameswaran M, Kinder SJ, et al. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development. 1997; 124: 1631-42
|
|
|
11) Kirby M. Cardiac Development. Oxford: Oxford University Press; 2007
|
|
|
12) Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005; 6: 826-35
|
|
|
13) Hansson EM, Lindsay ME, Chien KR. Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell. 2009; 5: 364-77
|
|
|
14) Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell. 2006; 126: 1037-48
|
|
|
15) 竹内 純, Bruneau BG. Molecularな視点から心臓発生, 疾患のメカニズムを紐解く~クロマチンリモデリングファクターとモディフィケイションファクター~. 細胞工学. 2007; 26: 799-805
|
|
|
16) Bruneau BG. Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res. 2002; 90: 509-19
|
|
|
17) Vincent SD, Buckingham ME. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol. 2010; 90: 1-41
|
|
|
18) 竹内 純, 小柴和子. 心臓誘導と心筋分化—マスター因子は存在するか. 医学のあゆみ. 2009; 229: 711-9
|
|
|
19) Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell. 2001; 1: 435-40
|
|
|
20) Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol. 2001; 238: 97-109
|
|
|
21) Waldo KL, Kumiski DH, Wallis KT, et al. Conotruncal myocardium arises from a secondary heart field. Development. 2001; 128: 3179-88
|
|
|
22) Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003; 5: 877-89
|
|
|
23) Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992; 20: 1391-6
|
|
|
24) Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1993; 392: 293-6
|
|
|
25) Kirby ML, Waldo KL. Role of neural crest in congenital heart disease. Circulation. 1990; 82: 332-40
|
|
|
26) Wei Y, Mikawa T. Fate diversity of primitive streak cells during heart field formation in ovo. Dev Dyn. 2000; 219: 505-13
|
|
|
27) Cai CL, Martin JC, Sun Y, et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008; 454: 104-8
|
|
|
28) Zhou B, Ma Q, Rajagopal S, Wu SM, et al. Epicardial progenitors contribute to the cardio-myocyte lineage in the developing heart. Nature. 2008; 454: 109-13
|
|
|
29) Saga Y, Miyagawa-Tomita S, Takagi A, et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development. 1999; 126: 3437-47
|
|
|
30) Saga Y, Kitajima S, Miyagawa-Tomita S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med. 2000; 10: 345-52
|
|
|
31) Inman KE, Downs KM. Localization of Brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation. Gene Expr Patterns. 2006; 6: 783-93
|
|
|
32) Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006; 11: 723-32
|
|
|
33) Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 2006; 127: 1137-50
|
|
|
34) Wu SM. Mesp1 at the heart of mesoderm lineage specification. Cell Stem Cell. 2008; 3: 1-2
|
|
|
35) Prall OW, Menon MK, Solloway MJ, et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell. 2007; 128: 947-59
|
|
|
36) Sun Y, Liang X, Najafi N, et al. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol. 2007; 304: 286-96
|
|
|
37) Brown CB, Wenning JM, Lu MM, et al. Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardio-vascular development in the mouse. Dev Biol. 2004; 267: 190-202
|
|
|
38) Verzi MP, McCulley DJ, De Val S, et al. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol. 2005; 287: 134-45
|
|
|
39) Brade T, Gessert S, Kühl M, et al. The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development. Dev Biol. 2007; 311: 297-310
|
|
|
40) de Pater E, Clijsters L, Marques SR, et al. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development. 2009; 136: 1633-41
|
|
|
41) Xu H, Morishima M, Wylie JN, et al. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development. 2004; 131: 3217-27
|
|
|
42) Hoogaars WM, Engel A, Brons JF, et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 2007; 21: 1098-112
|
|
|
43) Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001; 106: 709-21
|
|
|
44) Koshiba-Takeuchi K, Takeuchi JK, Arruda EP, et al. Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nat Genet. 2006; 38: 175-83
|
|
|
45) Koshiba-Takeuchi K, Mori AD, Kaynak BL, et al. Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature. 2009; 461: 95-8
|
|
|
46) Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K, et al. Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development. 2005; 132: 2463-74
|
|
|
47) Stennard FA, Costa MW, Lai D, et al. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development. 2005; 132: 2451-62
|
|
|
48) Stennard FA, Harvey RP. T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development. 2005; 132: 4897-910
|
|
|
49) Hoogaars WM, Barnett P, Moorman AF, et al. T-box factors determine cardiac design. Cell Mol Life Sci. 2007; 64: 646-60
|
|
|
50) Hiroi Y, Kudoh S, Monzen K, et al. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet. 2001; 28: 276-80
|
|
|
51) Gary V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2004; 424: 443-7
|
|
|
52) Dodou E, Verzi MP, Anderson JP, et al. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development. 2004; 131: 3931-42
|
|
|
53) von Both I, Silvestri C, Erdemir T, et al. Foxh1 is essential for development of the anterior heart field. Dev Cell. 2004; 7: 331-45
|
|
|
54) Lickert H, Takeuchi JK, Von Both I, et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 2004; 432: 107-12
|
|
|
55) Pashmforoush M, Lu JT, Chen H, et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell. 2004; 117: 373-86
|
|
|
56) McFadden DG, Barbosa AC, Richardson JA, et al. The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development. 2005; 132: 189-201
|
|
|
57) Moses KA, DeMayo F, Braun RM, et al. Embryonic expression of an Nkx2-5/Cre gene using ROSA26 reporter mice. Genesis. 2001; 31: 176-80
|
|
|
58) Ma Q, Zhou B, Pu WT. Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev Biol. 2008; 323: 98-104
|
|
|
59) Rajagopal SK, Ma Q, Obler D, et al. Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol. 2007; 43: 677-85
|
|
|
60) Maitra M, Schluterman MK, Nichols HA, et al. Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol. 2009; 326: 368-77
|
|
|
61) Xin M, Davis CA, Molkentin JD, et al. A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proc Natl Acad Sci U S A. 2006; 103: 11189-94
|
|
|
62) Peterkin T, Gibson A, Patient R. Redundancy and evolution of GATA factor requirements in development of the myocardium. Dev Biol. 2007; 311: 623-35
|
|
|
63) Holtzinger A, Evans T. Gata5 and Gata6 are functionally redundant in zebrafish for speci-fication of cardiomyocytes. Dev Biol. 2007; 312: 613-22
|
|
|
64) Zhao R, Watt AJ, Battle MA, et al. Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice. Dev Biol. 2008; 317: 614-9
|
|
|
65) Agnihotri S, Wolf A, Picard D, et al. GATA4 is a regulator of astrocyte cell proliferation and apoptosis in the human and murine central nervous system. Oncogene. 2009; 28: 3033-46
|
|
|
66) Haworth KE, Kotecha S, Mohun TJ, et al. GATA4 and GATA5 are essential for heart and liver development in Xenopus embryos. BMC Dev Biol. 2008; 8: 74
|
|
|
67) Watt AJ, Zhao R, Li J, et al. Development of the mammalian liver and ventral pancreas is dependent on GATA4. BMC Dev Biol. 2007; 7: 37
|
|
|
68) Asai R, Kurihara Y, Fujisawa K, et al. Endothelin receptor type A expression defines a distinct cardiac subdomain within the heart field and is later implicated in chamber myocardium formation. Development. 2010; 137: 3823-33
|
|
|
69) Männer J, Pérez-Pomares JM, Macías D, et al. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs. 2001; 169: 89-103
|
|
|
70) Wessels A, Pérez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004; 276: 43-57
|
|
|
71) Moretti A, Caron L, Nakano A, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diver-sification. Cell. 2006; 127: 1151-65
|
|
|
72) Sun Y, Liang X, Najafi N, et al. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol. 2007; 304: 286-96
|
|
|
73) Zhou B, von Gise A, Ma Q, et al. Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun. 2008; 375: 450-3
|
|
|
74) Zhou B, Ma Q, Rajagopal S, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008; 454: 109-13
|
|
|
75) Martínez-Estrada OM, Lettice LA, Essafi A, et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat Genet. 2010; 42: 89-93
|
|
|
76) Ishii Y, Garriock RJ, Navetta AM, et al. BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Dev Cell. 2010; 19: 307-16
|
|
|
77) Tomanek RJ, Ratajska A, Kitten GT, et al. Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis. Dev Dyn. 1999; 215: 54-61
|
|
|
78) Wada AM, Reese DE, Bader DM. Bves: prototype of a new class of cell adhesion molecules expressed during coronary artery development. Development. 2001; 128: 2085-93
|
|
|
79) Moretti A, Bellin M, Jung CB, et al. Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J. 2010; 24: 700-11
|
|
|
80) Kawai T, Takahashi T, Esaki M, et al. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ J. 2004; 68: 691-702
|
|
|
81) Monzen K, Shiojima I, Hiroi Y, et al. Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2. 5 and GATA-4. Mol Cell Biol. 1999; 19: 7096-105
|
|
|
82) Yuasa S, Itabashi Y, Koshimizu U, et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embry-onic stem cells. Nat Biotechnol. 2005; 23: 607-11
|
|
|
83) Kami D, Shiojima I, Makino H, et al. Gremlin enhances the determined path to cardiomyo-genesis. PLoS One. 2008; 3: e2407
|
|
|
84) Wobus AM, Kaomei G, Shan J, et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances develop-ment of ventricular cardiomyocytes. J Mol Cell Cardiol. 1997; 29: 1525-39
|
|
|
85) Lim JY, Kim WH, Kim J, et al. Involvement of TGF-beta1 signaling in cardiomyocyte differ-entiation from P19CL6 cells. Mol Cells. 2007; 24: 431-6
|
|
|
86) Lim DA, Tramontin AD, Trevejo JM, et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000; 28: 713-26
|
|
|
87) Bondue A, Lapouge G, Paulissen C, et al. Mesp1 acts as a master regulator of multipotent cardio-vascular progenitor specification. Cell Stem Cell. 2008; 3: 69-84
|
|
|
88) David R, Brenner C, Stieber J, et al. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol. 2008; 10: 338-45
|
|
|
89) Lindsley RC, Gill JG, Murphy TL, et al. Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell. 2008; 3: 55-68
|
|
|
90) Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008; 453: 524-8
|
|
|
91) Zhu W, Shiojima I, Ito Y, et al. IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis. Nature. 2008; 454: 345-9
|
|
|
92) Reiter JF, Alexander J, Rodaway A, et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 1999; 13: 2983-95
|
|
|
93) Latinkić BV, Kotecha S, Mohun TJ. Induction of cardiomyocytes by GATA4 in Xenopus ecto-dermal explants. Development. 2003; 130: 3865-76
|
|
|
94) Small EM, Warkman AS, Wang DZ, et al. Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development. 2005; 132: 987-97
|
|
|
95) Takeuchi JK, Ohgi M, Koshiba-Takeuchi K, et al. Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development. 2003; 130: 5953-64
|
|
|
96) Goetz SC, Brown DD, Conlon FL. TBX5 is required for embryonic cardiac cell cycle progression. Development. 2006; 133: 2575-84
|
|
|
97) Yamada Y, Sakurada K, Takeda Y, et al. Single-cell-derived mesenchymal stem cells over-expressing Csx/Nkx2. 5 and GATA4 undergo the stochastic cardiomyogenic fate and behave like transient amplifying cells. Exp Cell Res. 2007; 313: 698-706
|
|
|
98) Takeuchi JK, Lickert H, Bisgrove BW, et al. Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci U S A. 2007; 104: 846-51
|
|
|
99) Zhu Y, Gramolini AO, Walsh MA, et al. Tbx5-dependent pathway regulating diastolic function in congenital heart disease. Proc Natl Acad Sci U S A. 2008; 105: 5519-24
|
|
|
100) Yoshimura K, Kitagawa H, Fujiki R, et al. Distinct function of 2 chromatin remodeling complexes that share a common subunit, Williams syndrome transcription factor (WSTF). Proc Natl Acad Sci U S A. 2009; 106: 9280-5
|
|
|
101) Monzen K, Ito Y, Naito AT, et al. A crucial role of a high mobility group protein HMGA2 in cardiogenesis. Nat Cell Biol. 2008; 10: 567-74
|
|
|
102) Shirai M, Osugi T, Koga H, et al. The Polycomb-group gene Rae28 sustains Nkx2. 5/Csx expression and is essential for cardiac morpho-genesis. J Clin Invest. 2002; 110: 177-84
|
|
|
103) Nimura K, Ura K, Shiratori H, et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature. 2009; 460: 287-91
|
|
|
104) Wang Z, Zhai W, Richardson JA, et al. Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev. 2004; 18: 3106-16
|
|
|
105) Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663-76
|
|
|
106) Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008; 455: 627-32
|
|
|