医中誌リンクサービス


文献リスト

1) Pritchard JB, Miller DS. Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev. 1993; 73: 765-96
PubMed
医中誌リンクサービス
2) Enomoto A, Takeda M, Tojo A, et al. Roles of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J Am Soc Nephrol. 2002; 13: 1711-20
PubMed CrossRef
医中誌リンクサービス
3) Enomoto A, Takeda M, Taki K, et al. Interactions of human organic anion as well as cation transporters with indoxyl sulfate. Eur J Phramacol. 2003; 466: 3-20
医中誌リンクサービス
4) Deguch T, Ohtsuki S, Otagiri M, et al. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney Int. 2002; 61: 1760-8
PubMed CrossRef
医中誌リンクサービス
5) Deguchi T, Kusuhara H, Takadate A, et al. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 2004; 65: 162-74
PubMed CrossRef
医中誌リンクサービス
6) Mikkaishi T, Suzuki T, Onogawa T, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci U S A. 2004; 101: 3569-74
CrossRef
医中誌リンクサービス
7) Toyohara T, Suzuki T, Morimoto R, et al. SLCO4C1 transporter eliminates uremic toxins and attenuates hypertension and renal inflammation. J Am Soc Nephrol. 2009; 20: 2546-55
PubMed CrossRef
医中誌リンクサービス
8) Koepsell H, Endou H. The SLC22 drug transporter family. Pflugers Arch. 2004; 447: 666-76
PubMed CrossRef
医中誌リンクサービス
9) Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family- Biopharmaceutical, physiological, and pathological roles. Parhmaceutical Res. 2007; 24: 450-70
医中誌リンクサービス
10) Mikkaichi T, Suzuki T, Tanemoto M. The organic anion transporter (OATP) family. Drug Metab Pharmacokinet. 2004; 19: 171-9
医学中央雑誌刊行会  PubMed CrossRef J-Stage
医中誌リンクサービス
11) Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP-SLC21 family- phylogenetic classification as OATP-SLCO superfamily, new nomenclature and molecular functional properties. Pflugers Arch. 2004; 447: 653-65
PubMed CrossRef
医中誌リンクサービス
12) Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol. 2006; 290: F251-61
PubMed CrossRef
医中誌リンクサービス
13) Inui K, Masuda S, Saito H. Cellular and molecular aspects of drug transport in the kidney. Kidney Int. 2000; 58: 944-58
PubMed CrossRef
医中誌リンクサービス
14) Laouari D, Yang R, Veau C, et al. Two apical multidrug transporters, P-gp and MRP2, are differently altered in chronic renal failure. Am J Physiol Renal Pysiol. 2001; 280: F636-45
医中誌リンクサービス
15) Smeets PHE, van Aubel RAMH, Wouterse AC, et al. Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J Am Soc Nephrol. 2004; 15: 2828-35
PubMed CrossRef
医中誌リンクサービス
16) van Aubel RAMH, Smeets PHE, Peters JGP, et al. The MRP4(ABCC4) gene encodes a novel apical organic anion transporter in human kidney proximal tubules- putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol. 2002; 13: 595-603
PubMed
医中誌リンクサービス
17) Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev. 2004; 84: 987-1049
PubMed CrossRef
医中誌リンクサービス
18) Sweet DH, Bush KT, Nigam SK. The organic anion transporter family- from physiology to ontogeny and the clinic. Am J Physiol Renal Physiol. 2001; 281: F197-205
PubMed
医中誌リンクサービス
19) van de Water FM, Masereeuw R, Russel FGM. Fuction and regulation of multidrug resistance proteins(MRPs) in the renal elimination of organic anions. Drug Metb Rev. 2005; 37: 443-71
医中誌リンクサービス
20) Anzai N, Kanai Y, Endou H. Organic anion transporter family- Current knowledge. J Phramcol Sci. 2006; 100: 411-26
医中誌リンクサービス
21) Motohashi H. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soci Nephrol. 2002; 13: 866-74
医中誌リンクサービス
22) Sekine T, Cha SH, Tsuda M, et al. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett. 1998; 429: 179-81
PubMed CrossRef
医中誌リンクサービス
23) Enomoto A, Takeda M, Shimoda M, et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J pharmacol Exp Ther. 2002; 301: 797-802
PubMed CrossRef
医中誌リンクサービス
24) Kusuhara H, Sekine T, Utsunomiya-Tate N, et al. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem. 1999; 274: 13675-90
PubMed CrossRef
医中誌リンクサービス
25) Cha SH. Sekine T, Kusuhara H. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem. 2000; 275: 4507-12
PubMed CrossRef
医中誌リンクサービス
26) Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature. 2002; 417: 447-52
PubMed
医中誌リンクサービス
27) Ekarantanawong S, Anzai N, Jutbaha P, et al. Human organic anion transporter 4 is a renal apical organic anion/decarboylate exchanger in the proximal tubules. J Phramacol Sci. 2004; 94: 297-304
医中誌リンクサービス
28) Youngblood GL, Sweet DH. Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am J Pphysiol Renal Physiol. 2004; 287: F236-44
医中誌リンクサービス
29) Anzai N, Jutabha P, Enomoto A, et al. Functional characterization of rat organic anion transporter 5 (Slc22a19) at the apical membrane of renal proximal tubules. J Phramacol Exp Ther. 2005; 315: 534-44
医中誌リンクサービス
30) Enomoto A, Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol. 2005; 9: 195-205
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
31) Anzai N, Kanai Y, Endou H. New insights into renal transport of urate. Curr Opin Rheumatol. 2007; 19: 151-7
PubMed CrossRef
医中誌リンクサービス
32) Vanholder R, Smmet RD, Glorieux G, et al. Review on uremic toxins- Classification, concentration, and interindividual variability. Kidney Int. 2003; 63: 1934-43
PubMed CrossRef
医中誌リンクサービス
33) Yavuz A, Tetta C, Ersoy FF, et al. Uremic toxins: A new focus on an old subject. Semin Dial. 2005; 18: 203-11
PubMed CrossRef
医中誌リンクサービス
34) Vanholder R, Baurmeister U, Brunet P, et al. A bench to bedside view of urenic toxins. J Am Soc Nephrol. 2008; 19: 863-70
PubMed CrossRef
医中誌リンクサービス
35) Vanholder R, Van Laecke S, Glorieux G. What is new in uremic toxicity? Periatr Nephrol. 2008; 23: 1211-21
医中誌リンクサービス
36) Niwa T. Renal cell metabolism. In: Massry SG, Glassock RJ, editors. Textbool of Nephrology. 4th ed. Philadelphia: Williams and Wilkins; 2001. p.1269-72
医中誌リンクサービス
37) Niwa T, Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med. 1994; 124: 96-104
PubMed
医中誌リンクサービス
38) Miyazaki T, Aoyama I, Ise M, et al. An oral sorbent reduces overload of indoxyl sulfate and gene expression of TGF-β1 in uraemic rat kidneys. Nephrol Dial Transplant. 2000; 15: 1773-81
PubMed CrossRef
医中誌リンクサービス
39) Enomoto A, Niwa T. Roles of organic anion transporters in the progression of chronic renal failure. Therapeu Apheresis Dial. 2007; 11: S27-31
医中誌リンクサービス
40) Sun H, Frasseto L, Benet LZ. Effects of renal failure on drug transport and metabolism. Pharmacol Theraputics. 2006; 109: 1-11
医中誌リンクサービス
41) Saito H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury-Pharmacological and toxicological implications. Pharmacol Ther. 2010; 125: 79-91
PubMed CrossRef
医中誌リンクサービス
42) Deguchi T, Takemoto M, Uehara N, et al. Renal clearance of endogenous hippurate correlates with expression levels of renal organic anion transporters in uremic rats. J Pharamacol Exp Ther. 2005; 14: 932-8
医中誌リンクサービス
43) Matsuzaki T, Watanabe H, Yoshitome K, et al. Down regulation of organic anion transporters in rat kidney under ischemia reperfusion -induced acute renal failure. Kidney Int. 2007; 71: 539-47
PubMed CrossRef
医中誌リンクサービス
44) Schneider R, Sauvant C, Betz B, et al. Downregulation of organic anion transporters OAT1 and OAT3 correlates with impaired secretion of para-aminohippurate after ischemic acute renal failure in rats. Am J Physiol Renal Physiol. 2007; 292: F1599-605
PubMed CrossRef
医中誌リンクサービス
45) Morisaki T Matsuzaki T, Yokoo K, et al. Regulation of renal organioc ion transporters in cisplatin-induced acute kidney injury and uremia in rats. Pharm Res. 2008; 25: 2526-33
PubMed CrossRef
医中誌リンクサービス
46) Aleksunes LM, Augstine LM, Scheffer GL, et al. Renal xenobiotic transporters are differentially expressed in mice following cisplatin treatment. Toxicology. 2008; 250: 82-8
PubMed CrossRef
医中誌リンクサービス
47) Sakurai Y, Motohashi H, Ueo H, et al. Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm Res. 2004; 21: 61-7
PubMed CrossRef
医中誌リンクサービス
48) Sakurai Y, Motohashi H, Ogasawara K, et al. Pharmacokinetic siginificance of renal OAT3(SLC22A8) for anionic drug elimination in patients with mesangial proliferative glomerulonephritis. Pharm Res. 2005; 22: 2016-22
PubMed CrossRef
医中誌リンクサービス
49) Suzuki T, Abe T. Thyroid hormone transporters in the brain. Cereberum. 2008; 7: 75-83
医中誌リンクサービス
50) Abe T, Suzuki T, Unno M, et al. Thyroid hormone transporters: recent advances. Trends Endocrinol Metab. 2002; 13: 215-20
PubMed CrossRef
医中誌リンクサービス
51) Soga T, Ohashi Y, Naraoka H, et al. Quantitative metabolome analysis using capillary electrophoresis mass soectrometry. J Proteome Res. 2003; 2: 488-94
PubMed CrossRef
医中誌リンクサービス
52) Ueda S. Yamagishi S, Matsumoto Y, et al. Asymmetric dimethylarginine (ADMA) is a novel emerging risk factor for cardiovascular disease and the development of renal injury in chronic kidney disease. Clin Exp Nephrol. 2007; 11: 115-21
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
53) Kielstein JT, Zoccali C. Asymmetric dimethylarginine: a novel marker of risk and a potential taraget for therapy in chronic kidney disease. Curr Opin Nephrol Hypertens. 2008; 17: 609-15
PubMed CrossRef
医中誌リンクサービス
54) Taes YE, Marescau B, De Vriese A, et al. Guanidino compounds after creatine supplementation in renal failure paitents and their relation to inflammatory status. Nephrol Dial Transplat. 2008; 23: 1330-5
医中誌リンクサービス
55) De Deyn PP, Vanholder R, Eloot S, et al. Guanidino compounds as uremic (neuro)toxins. Semin Dial. 2009; 22: 340-5
PubMed CrossRef
医中誌リンクサービス
56) Saffran M, Prado JL. Inhibition of aconitase by trans-aconitate. J Biol Chem. 1949; 180: 1301-9
PubMed
医中誌リンクサービス
57) Toyohara T, Akiyama Y, Suzuki T, et al. Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010; 33: 944-52
PubMed CrossRef
医中誌リンクサービス
58) Hoek FJ, Kemperman FA, Krediet RT. A comparison between cystatin C, plasma creatinine and Cocckcroft and Gault fomula for the estimation of glomernlar filtration rate. Nephrol Dial Transplant. 2003; 18: 2024-31
PubMed CrossRef
医中誌リンクサービス
59) Fujii-Kuriyama Y, Miura J. Molecular mechanism of AhR functions in the regulation of cytochrome P450 genes. Biophys Res Commun. 2005; 228: 311-7
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp