1) Kitamura M. Endoplasmic reticulum stress in the kidney. Clin Exp Nephrol. 2008; 12: 317-25
|
|
|
2) Kitamura M. Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol - Renal. 2008; 295: F323-42
|
|
|
3) Brewer JW, Diehl JA. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A. 2000; 97: 12625-30
|
|
|
4) Zhang F, Hamanaka RB, Bobrovnikova-Marjon E, et al. Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest. J Biol Chem. 2006; 281: 30036-45
|
|
|
5) Barone MV, Crozat A, Tabaee A, et al. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev. 1994; 8: 453-64
|
|
|
6) Natori T, Nagai K. Endoplasmic reticulum stress upregulates the chondroitin sulfate level which thus prevents neurite extension in C6 glioma cells and primary cultured astrocytes. Cell Mol Neurobiol. 2008; 28: 857-66
|
|
|
7) Hollien J, Lin JH, Li H, et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 2009; 186: 323-31
|
|
|
8) Zhang K, Wong HN, Song B, et al. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis. J Clin Invest. 2005; 115: 268-81
|
|
|
9) Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP1. Nature. 2001; 412: 300-7
|
|
|
10) Harding HP, Zeng H, Zhang Y, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001; 7: 1153-63
|
|
|
11) Zhang P, McGrath B, Li S, et al. The PERK eukaryotic initiation factor 2 α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol. 2002; 22: 3864-74
|
|
|
12) Reimold AM, Etkin A, Clauss I, et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 2000; 14: 152-7
|
|
|
13) Nakanishi K, Dohmae N, Morishima N. Endoplasmic reticulum stress increases myofiber formation in vitro. FASEB J. 2007; 21: 2994-3003
|
|
|
14) Huang T, Wan Y, Zhu Y, et al. Downregulation of gap junction expression and function by endoplasmic reticulum stress. J Cell Biochem. 2009; 107: 973-83
|
|
|
15) Yao J, Oite T, Kitamura M. Gap junctional intercellular communication in the juxtaglomerular apparatus. Am J Physiol - Renal. 2009; 296: F939-46
|
|
|
16) Pahl HL, Baeuerle PA. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-κB. EMBO J. 1995; 14: 2580-8
|
|
|
17) Yamazaki H, Hiramatsu N, Hayakawa K, et al. Activation of the Akt - NF-κB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J Immunol. 2009; 183: 1480-7
|
|
|
18) Okamura M, Takano Y, Hiramatsu N, et al. Suppression of cytokine responses by indomethacin in podocytes: a mechanism through induction of unfolded protein response. Am J Physiol - Renal. 2008; 295: F1495-503
|
|
|
19) Hayakawa K, Hiramatsu N, Okamura M, et al. Blunted activation of NF-κB and NF-κB-dependent gene expression by geranylgeranyl acetone: Involvement of unfolded protein response. Biochem Biophys Res Commun. 2008; 365: 47-53
|
|
|
20) Takano Y, Hiramatsu N, Okamura M, et al. Suppression of cytokine response by GATA inhibitor K-7174 via unfolded protein response. Biochem Biophys Res Commun. 2007; 360: 470-5
|
|
|
21) Du S, Hiramatsu N, Hayakawa K, et al. Suppression of NF-κB by cyclosporine A and tacrolimus (FK506) via induction of the C/EBP family: Implication for unfolded protein response. J Immunol. 2009; 182: 7201-11
|
|
|
22) Hayakawa K, Hiramatsu N, Okamura M, et al. Acquisition of anergy to proinflammatory cytokines in non-immune cells through endoplasmic reticulum stress response: A mechanism for subsidence of inflammation. J Immunol. 2009; 182: 1182-91
|
|
|
23) Hayakawa K, Nakajima S, Hiramatsu N, et al. ER stress depresses NF-κB activation in mesangial cells through preferential induction of C/EBPβ. J Am Soc Nephrol. 2010; 21: 73-81
|
|
|
24) Nakajima S, Saito Y, Takahashi S, et al. Anti-inflammatory subtilase cytotoxin up-regulates A20 through the unfolded protein response. Biochem Biophys Res Commun. 2010; 397: 176-80
|
|
|
25) Kitamura M. Biphasic, bidirectional regulation of NF-κB by endoplasmic reticulum stress. Antioxid Redox Signal. 2009; 11: 2353-64
|
|
|
26) Kitamura M. Endoplasmic reticulum stress in glomerulonephritis: the bad guy turns good? J Am Soc Nephrol. 2009; 20: 1871-3
|
|
|
27) Harama D, Koyama K, Mukai M, et al. A sub-cytotoxic dose of subtilase cytotoxin prevents LPS-induced inflammatory responses, depending on its capacity to induce the unfolded protein response. J Immunol. 2009; 183: 1368-74
|
|
|
28) Inagi R, Kumagai T, Nishi H, et al. Preconditioning with endoplasmic reticulum stress ameliorates mesangioproliferative glomerulonephritis. J Am Soc Nephrol. 2008; 19: 915-22
|
|
|
29) Kitamura M, Hiramatsu N. The oxidative stress-endoplasmic reticulum stress axis in cadmium toxicity. Biometals. 2010; 23: 941-50
|
|
|
30) Kitamura M, Fine LG. The concept of glomerular self-defense. Kidney Int. 1999; 55: 1639-71
|
|
|
31) Hayakawa K, Meng Y, Hiramatsu N, et al. Priming of glomerular mesangial cells by activated macrophages causes blunted responses to proinflammatory stimuli. J Immunol. 2006; 176: 2529-37
|
|
|
32) Endo S, Hiramatsu N, Hayakawa K, et al. Geranylgeranylacetone, an inducer of HSP70, elicits unfolded protein response and coordinates cellular fate independently of HSP70. Mol Pharmacol. 2007; 72: 1337-48
|
|
|
33) Kitamura M. Induction of the unfolded protein response by calcineurin inhibitors: A double-edged sword in renal transplantation. Nephrol Dial Transplant. 2010; 25: 6-9
|
|
|