1) 日本高血圧学会. 高血圧治療ガイドライン. 2009
|
|
|
2) Nishiyama A, Hitomi H, Rahman A, et al. Drug discovery for overcoming chronic kidney disease (CKD): pharmacological effects of mineralocorticoid-receptor blockers. J Pharmacol Sci. 2009; 109: 1-6
|
|
|
3) Nishiyama A, Yao L, Nagai Y, et al. Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats. Hypertension. 2004; 43: 841-8
|
|
|
4) Shibata S, Nagase M, Yoshida S, et al. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension. 2007; 49: 355-64
|
|
|
5) Rocha R, Chander PN, Khanna K, et al. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension. 1998; 31: 451-8
|
|
|
6) Kobayashi N, Hara K, Tojo A, et al. Eplerenone shows renoprotective effect by reducing LOX-1-mediated adhesion molecule, PKCepsilon-MAPK-p90RSK, and Rho-kinase pathway. Hypertension. 2005; 45: 538-44
|
|
|
7) Guo C, Martinez-Vasquez D, Mendez GP, et al. Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus. Endocrinology. 2006; 147: 5363-73
|
|
|
8) Quinkler M, Zehnder D, Eardley KS, et al. Increased expression of mineralocorticoid effector mechanisms in kidney biopsies of patients with heavy proteinuria. Circulation. 2005; 112: 1435-43
|
|
|
9) Chrysostomou A, Becker G. Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease. N Engl J Med. 2001; 345: 925-6
|
|
|
10) Rossing K, Schjoedt KJ, Smidt UM, et al. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care. 2005; 28: 2106-12
|
|
|
11) Bianchi S, Bigazzi R, Campese VM. Antagonists of aldosterone and proteinuria in patients with CKD: an uncontrolled pilot study. Am J Kidney Dis. 2005; 46: 45-51
|
|
|
12) Nagase M, Fujita T. Mineralocorticoid receptor activation in obesity hypertension. Hypertens Res. 2009; 32: 649-57
|
|
|
13) Kurella M, Lo JC, Chertow GM. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol. 2005; 16: 2134-40
|
|
|
14) Nagase M, Yoshida S, Shibata S, et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol. 2006; 17: 3438-46
|
|
|
15) Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003; 100: 14211-6
|
|
|
16) Minami J, Ishimitsu T, Kawano Y, et al. Effects of amlodipine and nifedipine retard on autonomic nerve activity in hypertensive patients. Clin Exp Pharmacol Physiol. 1998; 25: 572-6
|
|
|
17) Tsutamoto T, Tsutsui T, Maeda K, et al. Effects of long-acting calcium channel antagonists on neurohumoral factors: comparison of nifedipine coat-core with amlodipine. J Cardiovasc Pharmacol. 2003; 41 Suppl 1: S77-81
|
|
|
18) Dietz JD, Du S, Bolten CW, et al. A number of marketed dihydropyridine calcium channel blockers have mineralocorticoid receptor antagonist activity. Hypertension. 2008; 51: 742-8
|
|
|
19) Arhancet GB, Woodard SS, Dietz JD, et al. Stereochemical requirements for the mineralocorticoid receptor antagonist activity of dihydropyridines. J Med Chem. 2010; 53: 4300-4
|
|
|
20) Fan YY, Kohno M, Nakano D, et al. Inhibitory effects of a dihydropyridine calcium channel blocker on renal injury in aldosterone-infused rats. J Hypertens. 2009; 27: 1855-62
|
|
|
21) Matsui T, Takeuchi M, Yamagishi S. Nifedipine, a calcium channel blocker, inhibits inflammatory and fibrogenic gene expressions in advanced glycation end product (AGE)-exposed fibroblasts via mineralocorticoid receptor antagonistic activity. Biochem Biophys Res Commun. 2010; 396: 566-70
|
|
|
22) Fagart J, Hillisch A, Huyet J, et al. A new mode of mineralocorticoid receptor antagonism by a potent and selective non-steroidal molecule. J Biol Chem. 2010; 285: 29932-40
|
|
|
23) Du J, Fan YY, Hitomi H, et al. Mineralocorticoid receptor blockade and calcium channel blockade have different renoprotective effects on glomerular and interstitial injury in rats. Am J Physiol Renal Physiol. 2009; 297: F802-8
|
|
|
24) Nagase M, Shibata S, Yoshida S, et al. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension. 2006; 47: 1084-93
|
|
|
25) Xue C, Siragy HM. Local renal aldosterone system and its regulation by salt, diabetes, and angiotensin II type 1 receptor. Hypertension. 2005; 46: 584-90
|
|
|
26) Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med. 1992; 120: 893-901
|
|
|
27) Rickard AJ, Funder JW, Morgan J, et al. Does glucocorticoid receptor blockade exacerbate tissue damage after mineralocorticoid/salt administration? Endocrinology. 2007; 148: 4829-35
|
|
|
28) Funder JW. Reconsidering the roles of the mineralocorticoid receptor. Hypertension. 2009; 53: 286-90
|
|
|
29) Shibata S, Nagase M, Yoshida S, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008; 14: 1370-6
|
|
|
30) Sun GP, Kohno M, Guo P, et al. Involvements of Rho-kinase and TGF-beta pathways in aldosterone-induced renal injury. J Am Soc Nephrol. 2006; 17: 2193-201
|
|
|
31) Terada Y, Kuwana H, Kobayashi T, et al. Aldosterone-stimulated SGK1 activity mediates profibrotic signaling in the mesangium. J Am Soc Nephrol. 2008; 19: 298-309
|
|
|
32) Miyata K, Rahman M, Shokoji T, et al. Aldosterone stimulates reactive oxygen species production through activation of NADPH oxidase in rat mesangial cells. J Am Soc Nephrol. 2005; 16: 2906-12
|
|
|
33) Liu G, Miyata K, Hitomi H, et al. Involvement of mineralocorticoid receptor in high glucose-induced big mitogen-activated protein kinase 1 activation and mesangial cell proliferation. J Hypertens. 2010; 28: 536-42
|
|
|