医中誌リンクサービス


文献リスト

1) ADHR Consortium. Autosomal dominant hypo-phosphataemic rickets is associated with muta-tions in FGF23. Nat Genet. 2000; 26: 345-8
PubMed CrossRef
医中誌リンクサービス
2) Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001; 98: 6500-5
PubMed CrossRef
医中誌リンクサービス
3) Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, pre-ferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000; 277: 494-8
PubMed CrossRef
医中誌リンクサービス
4) Liu S, Zhou J, Tang W, et al. Pathogenic role of FGF23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006; 291: E38-49
PubMed CrossRef
医中誌リンクサービス
5) Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabo-lism and phosphate homeostasis. J Bone Miner Res. 2004; 19: 429-35
PubMed CrossRef
医中誌リンクサービス
6) Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006; 38: 1310-5
PubMed CrossRef
医中誌リンクサービス
7) Lorenz-Depiereux B, Bastepe M, Benet-Pages A, et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeo-stasis. Nat Genet. 2006; 38: 1248-50
PubMed CrossRef
医中誌リンクサービス
8) Fukumoto S, Martin TJ. Bone as an endocrine organ. Trends Endocrinol Metab. 2009; 20: 230-6
PubMed CrossRef
医中誌リンクサービス
9) Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004; 20: 563-9
PubMed CrossRef
医中誌リンクサービス
10) Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007; 27: 3417-28
CrossRef
医中誌リンクサービス
11) Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006; 444: 770-4
PubMed CrossRef
医中誌リンクサービス
12) Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006; 281: 6120-3
PubMed CrossRef
医中誌リンクサービス
13) Liu S, Vierthaler L, Tang W, et al. FGFR3 and FGFR4 do not mediate renal effects of FGF23. J Am Soc Nephrol. 2008; 19: 2342-50
PubMed CrossRef
医中誌リンクサービス
14) Moore DD. Physiology. Sister act. Science. 2007; 316: 1436-8
PubMed CrossRef
医中誌リンクサービス
15) Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390: 45-51
PubMed CrossRef
医中誌リンクサービス
16) Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF-23 in phos-phate and vitamin D metabolism. J Clin Invest. 2004; 113: 561-8
PubMed
医中誌リンクサービス
17) Sitara D, Razzaque MS, Hesse M, et al. Homozygous ablation of fibroblast growth fac-tor-23 results in hyperphosphatemia and im-paired skeletogenesis, and reverses hypophos-phatemia in Phex-deficient mice. Matrix Biol. 2004; 23: 421-32
PubMed CrossRef
医中誌リンクサービス
18) Ohnishi M, Nakatani T, Lanske B, et al. Reversal of mineral ion homeostasis and soft-tissue calcifica-tion of klotho knockout mice by deletion of vitamin D 1alpha-hydroxylase. Kidney Int. 2009; 75: 1166-72
PubMed CrossRef
医中誌リンクサービス
19) Sitara D, Razzaque MS, St-Arnaud R, et al. Genetic ablation of vitamin D activation pathway reverses biochemical and skeletal anomalies in Fgf-23-null animals. Am J Pathol. 2006; 169: 2161-70
PubMed CrossRef
医中誌リンクサービス
20) Araya K, Fukumoto S, Backenroth R, et al. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab. 2005; 90: 5523-7
PubMed CrossRef
医中誌リンクサービス
21) Ichikawa S, Imel EA, Kreiter ML, et al. A homo-zygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007; 117: 2684-91
PubMed CrossRef
医中誌リンクサービス
22) Topaz O, Shurman DL, Bergman R, et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet. 2004; 36: 579-81
PubMed CrossRef
医中誌リンクサービス
23) Saito H, Maeda A, Ohtomo S, et al. Circulating FGF-23 is regulated by 1alpha, 25-dihydroxy-vitamin D3 and phosphorus in vivo. J Biol Chem. 2005; 280: 2543-9
PubMed
医中誌リンクサービス
24) Shimada T, Yamazaki Y, Takahashi M, et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol. 2005; 289: F1088-95
PubMed CrossRef
医中誌リンクサービス
25) Yoshida T, Fujimori T, Nabeshima Y. Mediation of unusually high concentrations of 1, 25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology. 2002; 143: 683-9
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp