1) Kuro-o M, Matsumura Y, Aizawa H, et al. Muta-tion of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390: 45-51
|
|
|
2) Imura A, Tsuji Y, Murata M, et al. α-Klotho as a regulator of calcium homeostasis. Science. 2007; 316: 1615-8
|
|
|
3) Ito S, Kinoshita S, Shiraishi N, et al. Molecular cloning and expression anlysis of a novel gene β-Klotho, which encodes a novel Klotho family protein. Mech Dev. 2000; 98: 115-9
|
|
|
4) Ito S, Fujimori T, Furuya A, et al. Impaired negative feedback suppression of bile acid synthesis in mice lacking βKlotho. J Clin Invest. 2005; 115: 2202-8
|
|
|
5) Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006; 444: 770-4
|
|
|
6) Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001; 2: REVIEWS3005
|
|
|
7) Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004; 20: 563-9
|
|
|
8) Tohyama O, Imura A, Iwano A, et al. Klotho is a novelβ-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J Biol Chem. 2004; 273: 9777-84
|
|
|
9) Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003; 72; 137-74
|
|
|
10) Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999; 284; 1362-5
|
|
|
11) Goodwin B, Jones SA, Price RR, et al. A regula-tory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 2000; 6: 517-26
|
|
|
12) Sinal CJ, Tohkin M, Miyata M, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000; 102: 731-44
|
|
|
13) Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005; 2: 217-25
|
|
|
14) Jones S. Mini-review: endocrine actions of fibro-blast growth factor 19. Mol Pharm. 2008; 5: 42-8
|
|
|
15) Gospodarowicz D, Neufeld G, Schweigerer L. Fibroblast growth factor. Mol Cell Endocrinol. 1986; 46: 187-204
|
|
|
16) Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn. 2008; 237: 18-27
|
|
|
17) Nishimura T, Utsunomiya Y, Hoshikawa M, et al. Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain. Biochim Biophys Acta. 1999; 1444: 148-51
|
|
|
18) Fukumoto S, Namba N, Ozono K, et al. Causes and differential diagnosis of hypocalcemia—recommendation proposed by expert panel supported by ministry of health, labour and welfare, Japan. Endocr J. 2008; 55: 787-94
|
|
|
19) Tomiyama K, Maeda R, Urakawa I, et al. Relevant usage of Klotho in FGF19 subfamily signaling system in vivo: an implication for β-Klotho-independent FGF21-signaling in adipose. Proc Natl Acad Sci U S A. in press
|
|
|
20) Hotta Y, Nakamura H, Konishi M, et al. Fibro-blast growth factor 21 regulates lipolysis in white adipose tissue but not required for ketogenesis and triglyceride clearance in liver. Endocrinology. 2009; 150: 4625-33
|
|
|
21) Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005; 115; 1627-35
|
|
|
22) Kharitonenkov A, Shanafelt AB. Fibroblast growth factor-21 as a therapeutic agent for metobolic diseases. BioDrugs. 2008; 22: 37-44
|
|
|
23) Berglund ED, Li CY, Bina HA, et al. Fibroblast Growth Factor 21 controls glycemia via regula-tion of hepatic glucose flux and insulin sensitivity. Endocrinology. 2009; 150: 4084-93
|
|
|
24) Ryden M. Fibroblast growrh factor21: an over-view from a clinical perspective. Cell Mol Life Sci. 2009; 66: 2067-73
|
|
|
25) Arner P, Petterson A, Mitchel PJ, et al. FGF21 attenuates lipolysis in human adipocytes - A possible link to improved insulin sensitivity. FEBS Lett. 2008; 582: 1725-30
|
|
|