1) Nishimura T, Nakatake Y, Konishi M, et al. Identification of a novel FGF, FGF-21, preferen-tially expressed in the liver. Biochim Biophys Acta. 2000; 1492: 203-6
|
|
|
2) Moore DD. Physiology. Sister act. Science. 2007; 316: 1436-8
|
|
|
3) Izumiya Y, Bina HA, Ouchi N, et al. FGF21 is an Akt-regulated myokine. FEBS Lett. 2008; 582: 3805-10
|
|
|
4) Muise ES, Azzolina B, Kuo DW, et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol. 2008; 74: 403-12
|
|
|
5) Wang H, Qiang L, Farmer SR. Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipo-cytes. Mol Cell Biol. 2008; 28: 188-200
|
|
|
6) Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005; 115: 1627-35
|
|
|
7) Kharitonenkov A, Wroblewski VJ, Koester A, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007; 148: 774-81
|
|
|
8) Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007; 5: 415-25
|
|
|
9) Badman MK, Pissios P, Kennedy AR, et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007; 5: 426-37
|
|
|
10) Lundåsen T, Hunt MC, Nilsson LM, et al. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun. 2007; 360: 437-40
|
|
|
11) Oishi K, Uchida D, Ishida N. Circadian expres-sion of FGF21 is induced by PPARalpha activa-tion in the mouse liver. FEBS Lett. 2008; 582: 3639-42
|
|
|
12) Iizuka K, Takeda J, Horikawa Y. Glucose induces FGF21 mRNA expression through ChREBP acti-vation in rat hepatocytes. FEBS Lett. 2009; 583: 2882-6
|
|
|
13) Ogawa Y, Kurosu H, Yamamoto M, et al. Beta-Klotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A. 2007; 104: 7432-7
|
|
|
14) Kurosu H, Choi M, Ogawa Y, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines meta-bolic activity of FGF19 and FGF21. J Biol Chem. 2007; 282: 26687-95
|
|
|
15) Kharitonenkov A, Dunbar JD, Bina HA, et al. FGF-21/FGF-21 receptor interaction and activa-tion is determined by betaKlotho. J Cell Physiol. 2008; 215: 1-7
|
|
|
16) Suzuki M, Uehara Y, Motomura-Matsuzaka K, et al. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol. 2008; 22: 1006-14
|
|
|
17) Kurosu H, Kuro-o M. The Klotho gene family and the endocrine fibroblast growth factors. Curr Opin Nephrol Hypertens. 2008; 17: 368-72
|
|
|
18) Kurosu H, Kuro-O M. The Klotho gene family as a regulator of endocrine fibroblast growth fac-tors. Mol Cell Endocrinol. 2009; 299: 72-8
|
|
|
19) Wente W, Efanov AM, Brenner M, et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006; 55: 2470-8
|
|
|
20) Moyers JS, Shiyanova TL, Mehrbod F, et al. Molecular determinants of FGF-21 activity-syn-ergy and cross-talk with PPARgamma signaling. J Cell Physiol. 2007; 210: 1-6
|
|
|
21) Potthoff MJ, Inagaki T, Satapati S, et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A. 2009; 106: 10853-8
|
|
|
22) Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides. 2007; 28: 2382-6
|
|
|
23) Inagaki T, Lin VY, Goetz R, et al. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab. 2008; 8: 77-83
|
|
|
24) Hotta Y, Nakamura H, Konishi M, et al. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology. 2009; 150: 4625-33
|
|
|
25) Reitman ML. FGF21: a missing link in the biology of fasting. Cell Metab. 2007; 5: 405-7
|
|
|
26) Stein S, Bachmann A, Lössner U, et al. Serum levels of the adipokine FGF21 depend on renal function. Diabetes Care. 2009; 32: 126-8
|
|
|
27) Gälman C, Lundåsen T, Kharitonenkov A, et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab. 2008; 8: 169-74
|
|
|
28) Mai K, Andres J, Biedasek K, et al. Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21. Diabetes. 2009; 58: 1532-8
|
|
|
29) Fruchart JC, Sacks F, Hermans MP, et al. The residual risk reduction initiative: a call to action to reduce residual vascular risk in patients with dyslipidemia. Am J Cardiol. 2008; 102: 1K-34K
|
|
|
30) Christodoulides C, Dyson P, Sprecher D, et al. Circulating FGF21 is induced by PPAR agonists but not ketosis in man. J Clin Endocrinol Metab. 2009; 94: 3594-601
|
|
|
31) Li K, Li L, Yang M, et al. Effects of Rosiglitazone on fasting plasma FGF-21 levels in patients with type 2 diabetes mellitus. Eur J Endocrinol. 2009; 161: 391-5
|
|
|
32) Karpe F, Ehrenborg EE. PPARδ in humans: genetic and pharmacological evidence for a significant metabolic function. Curr Opin Lipidol. 2009; 20: 333-6
|
|
|
33) Chavez AO, Molina-Carrion M, Abdul-Ghani MA, et al. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepat-ic insulin resistance. Diabetes Care. 2009; 32: 1542-6
|
|
|
34) Li H, Bao Y, Xu A, et al. Serum fibroblast growth factor 21 is associated with adverse lipid profiles and gamma-glutamyltransferase but not insulin sensitivity in Chinese subjects. J Clin Endocrinol Metab. 2009; 94: 2151-6
|
|
|
35) Dostálová I, Kaválková P, Haluzíková D, et al. Plasma concentrations of fibroblast growth fac-tors 19 and 21 in patients with anorexia nervosa. J Clin Endocrinol Metab. 2008; 93: 3627-32
|
|
|
36) Zhang X, Yeung DC, Karpisek M, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008; 57: 1246-53
|
|
|
37) Kharitonenkov A, Shanafelt AB. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs. 2008; 22: 37-44
|
|
|
38) Kharitonenkov A, Shanafelt AB. FGF21: a novel prospect for the treatment of metabolic diseases. Curr Opin Investig Drugs. 2009; 10: 359-64
|
|
|
39) Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008; 149: 6018-27
|
|
|
40) Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensi-tivity in diet-induced obese mice. Diabetes. 2009; 58: 250-9
|
|
|
41) Berglund ED, Li CY, Bina HA, et al. Fibroblast growth factor 21 (FGF21) controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology. 2009; 150: 4084-93
|
|
|