1) Mabuchi H, Nohara A, Noguchi T, et al. Molecu-lar genetic epidemiology of familial hyperchole-sterolemia in Hokuriku district of Japan. Atheroscler Suppl. 2009; 10: Abstract: 532
|
|
|
2) Yu W, Nohara A, Higashikata T, et al. Molecular genetic analysis of familial hypercholesterolemia: spectrum and regional difference of LDL receptor gene mutations in Japanese population. Atherosclerosis. 2002; 165: 335-42
|
|
|
3) Kastelein JJ, Wedel MK, Baker BF, et al. Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term admin-istration of an antisense inhibitor of apolipopro-tein B. Circulation. 2006; 114: 1729-35
|
|
|
4) Merki E, Graham MJ, Mullick AE, et al. Antisense oligonucleotide directed to human apolipoprotein B-100 reduces lipoprotein(a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein(a) transgenic mice. Circulation. 2008; 118: 743-53
|
|
|
5) Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006; 441: 111-4
|
|
|
6) Miserez AR, Keller U. Differences in the phenotypic characteristics of subjects with familial defective apolipoprotein B-100 and familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1995; 15: 1719-29
|
|
|
7) Soria LF, Ludwig EH, Clarke HR, et al. Asso-ciation between a specific apolipoprotein B muta-tion and familial defective apolipoprotein B-100. Proc Natl Acad Sci U S A. 1989; 86: 587-91
|
|
|
8) Rašlová K, Gašparovic J, Freiberger T. Diagnosis and treatment of familial hypercholesterolemia in Central-Eastern European Countries. Atheroscler Suppl. 2005; 6: 178-9
|
|
|
9) Miserez AR, Laager R, Chiodetti N, et al. High prevalence of familial defective apolipoprotein B-100 in Switzerland. J Lipid Res. 1994; 35: 574-83
|
|
|
10) Ilmonen M, Helio T, Ebeling T, et al. Screening for mutations in the exon 26 of the apolipo-protein B gene in hypercholesterolemic Finnish families by the single-strand conformation poly-morphism method. Hum Mutat. 1994; 4: 217-23
|
|
|
11) Friedlander Y, Dann EJ, Leitersdorf E. Absence of familial defective apolipoprotein B-100 in Israeli patients with dominantly inherited hyper-cholesterolemia and in offspring with parental history of myocardial infarction. Hum Genet. 1993; 91: 299-300
|
|
|
12) Schwartz EI, Shevtsov SP, Kuchinski AP, et al. Approach to identification of a point mutation in apo B100 gene by means of a PCR-mediated site-directed mutagenesis. Nucleic Acids Res. 1991; 19: 3752
|
|
|
13) Dedoussis GV, Skoumas J, Pitsavos C, et al. FH clinical phenotype in Greek patients with LDL-R defective vs. negative mutations. Eur J Clin Invest. 2004; 34: 402-9
|
|
|
14) Azian M, Hapizah MN, Khalid BA, et al. Use of the denaturing gradient gel electrophoresis (DGGE) method for mutational screening of patients with familial hypercholesterolaemia (FH) and Familial defective apolipoprotein B100 (FDB). Malays J Pathol. 2006; 28: 7-15
|
|
|
15) Nohara A, Yagi K, Inazu A, et al. Absence of familial defective apolipoprotein B-100 in Japanese patients with familial hypercholesterol-aemia. Lancet. 1995; 345: 1438
|
|
|
16) Miserez AR, Muller PY. Familial defective apolipoprotein B-100: a mutation emerged in the mesolithic ancestors of Celtic peoples? Atherosclerosis. 2000; 148: 433-6
|
|
|
17) Teng YN, Pan JP, Chou SC, et al. Familial defective apolipoprotein B-100: detection and haplotype analysis of the Arg(3500)-->Gln muta-tion in hyperlipidemic Chinese. Atherosclerosis. 2000; 152: 385-90
|
|
|
18) Nissen H, Hansen PS, Faergeman O, et al. Mutation screening of the codon 3500 region of the apolipoprotein B gene by denaturing gradient-gel electrophoresis. Clin Chem. 1995; 41: 419-23
|
|
|
19) Soufi M, Sattler AM, Maerz W, et al. A new but frequent mutation of apoB-100-apoB His3543Tyr. Atherosclerosis. 2004; 174: 11-6
|
|
|
20) Rabes JP, Varret M, Devillers M, et al. R3531C mutation in the apolipoprotein B gene is not sufficient to cause hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2000; 20: E76-82
|
|
|
21) Basistova Z, Gasparovic J, Sivakova D, et al. H3543Y mutation of apoB-100 in patients with phenotype of familial hypercholesterolemia. Atherosclerosis. 2007; 194: e185-7
|
|
|
22) Benn M, Nordestgaard BG, Jensen JS, et al. Mutation in apolipoprotein B associated with hypobetalipoproteinemia despite decreased bind-ing to the low density lipoprotein receptor. J Biol Chem. 2005; 280: 21052-60
|
|
|
23) Fouchier SW, Kastelein JJ, Defesche JC. Update of the molecular basis of familial hypercholesterol-emia in The Netherlands. Hum Mutat. 2005; 26: 550-6
|
|
|
24) Liyanage KE, Hooper AJ, Defesche JC, et al. High-resolution melting analysis for detection of familial ligand-defective apolipoprotein B-100 mutations. Ann Clin Biochem. 2008; 45(Pt 2): 170-6
|
|
|
25) Boren J, Ekstrom U, Agren B, et al. The molecular mechanism for the genetic disorder familial defective apolipoprotein B100. J Biol Chem. 2001; 276: 9214-8
|
|
|
26) Schonfeld G, Lin X, Yue P. Familial hypobeta-lipoproteinemia: genetics and metabol-ism. Cell Mol Life Sci. 2005; 62: 1372-8
|
|
|
27) Katsuda S, Kawashiri MA, Inazu A, et al. Apo-lipoprotein B gene mutations and fatty liver in Japanese hypobetalipoproteinemia. Clin Chim Acta. 2009; 399: 64-8
|
|
|
28) Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hyperchole-sterolemia. Nat Genet. 2003; 34: 154-6
|
|
|
29) Lambert G, Charlton F, Rye KA, et al. Molecular basis of PCSK9 function. Atherosclerosis. 2009; 203: 1-7
|
|
|
30) Cohen JC, Boerwinkle E, Mosley TH Jr, et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006; 354: 1264-72
|
|
|
31) Leigh SE, Leren TP, Humphries SE. Commentary PCSK9 variants: A new database. Atherosclerosis. 2009; 203: 32-3
|
|
|
32) Noguchi T, Katsuda S, Kawashiri M-A, et al. Profiles of Gain-of-function PCSK9 E32K muta-tion: including pure Homozygote and Com-pound Heterozygote with LDLR gene mutation. Atheroscler Suppl. 2009; 10: e994
|
|
|
33) Chan JC, Piper DE, Cao Q, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A. 2009; 106: 9820-5
|
|
|
34) Lakoski SG, Lagace TA, Cohen JC, et al. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab. 2009; 94: 2537-43
|
|
|
35) Harada-Shiba M, Takagi A, Miyamoto Y, et al. Clinical features and genetic analysis of auto-somal recessive hypercholesterolemia. J Clin Endocrinol Metab. 2003; 88: 2541-7
|
|
|
36) Tada H, Kawashiri M, Noguchi T, et al. Clinical impact of heterozygous carrier of autosomal recessive hypercholesterolemia on asymptomatic hyperlipidemic patients: evidence from familial gene analysis. Circulation. 2008; 118(18 Suppl): S405
|
|
|
37) Jones C, Garuti R, Michaely P, et al. Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia. J Clin Invest. 2007; 117: 165-74
|
|
|
38) 多田隼人, 川尻剛照, 池脇克則, 他. 常染色体劣性高コレステロール血症の脂質代謝異常 安定同位体を用いた臨床的検討. 日本内科学会雑誌. 2009; 98 Suppl: 124
|
|
|
39) Pisciotta L, Priore Oliva C, Pes GM, et al. Autosomal recessive hypercholesterolemia (ARH) and homozygous familial hypercholesterolemia (FH): a phenotypic comparison. Atherosclerosis. 2006; 188: 398-405
|
|
|
40) Filigheddu F, Quagliarini F, Campagna F, et al. Prevalence and clinical features of heterozygous carriers of autosomal recessive hypercholesterol-emia in Sardinia. Atherosclerosis. 2009; 207: 162-7
|
|
|
41) Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000; 290: 1771-5
|
|
|
42) Hopkins PN, Heiss G, Ellison RC, et al. Coronary artery disease risk in familial combined hyper-lipidemia and familial hypertriglyceridemia: a case-control comparison from the National Heart, Lung, and Blood Institute Family Heart Study. Circulation. 2003; 108: 519-23
|
|
|
43) McNeely MJ, Edwards KL, Marcovina SM, et al. Lipoprotein and apolipoprotein abnormalities in familial combined hyperlipidemia: a 20-year prospective study. Atherosclerosis. 2001; 159: 471-81
|
|
|
44) Goldstein JL, Schrott HG, Hazzard WR, et al. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973; 52: 1544-68
|
|
|
45) Suviolahti E, Lilja HE, Pajukanta P. Unraveling the complex genetics of familial combined hyperlipidemia. Ann Med. 2006; 38: 337-51
|
|
|
46) Pajukanta P, Lilja HE, Sinsheimer JS, et al. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat Genet. 2004; 36: 371-6
|
|
|
47) Naukkarinen J, Ehnholm C, Peltonen L. Genetics of familial combined hyperlipidemia. Curr Opin Lipidol. 2006; 17: 285-90
|
|
|
48) Reiner AP, Carlson CS, Jenny NS, et al. USF1 gene variants, cardiovascular risk, and mortality in European Americans: analysis of two US cohort studies. Arterioscler Thromb Vasc Biol. 2007; 27: 2736-42
|
|
|
49) Kristiansson K, Ilveskoski E, Lehtimaki T, et al. Association analysis of allelic variants of USF1 in coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2008; 28: 983-9
|
|
|
50) Gibson F, Hercberg S, Froguel P. Common polymorphisms in the USF1 gene are not asso-ciated with type 2 diabetes in French Caucasians. Diabetes. 2005; 54: 3040-2
|
|
|
51) Zeggini E, Damcott CM, Hanson RL, et al. Variation within the gene encoding the upstream stimulatory factor 1 does not influence suscep-tibility to type 2 diabetes in samples from populations with replicated evidence of linkage to chromosome 1q. Diabetes. 2006; 55: 2541-8
|
|
|
52) Ng MC, Miyake K, So WY, et al. The linkage and association of the gene encoding upstream stimulatory factor 1 with type 2 diabetes and metabolic syndrome in the Chinese population. Diabetologia. 2005; 48: 2018-24
|
|
|
53) Eichenbaum-Voline S, Olivier M, Jones EL, et al. Linkage and association between distinct variants of the APOA1/C3/A4/A5 gene cluster and familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 2004; 24: 167-74
|
|
|
54) Mar R, Pajukanta P, Allayee H, et al. Association of the APOLIPOPROTEIN A1/C3/A4/A5 gene cluster with triglyceride levels and LDL particle size in familial combined hyperlipidemia. Circ Res. 2004; 94: 993-9
|
|
|
55) Liu ZK, Hu M, Baum L, et al. Associations of polymorphisms in the apolipoprotein A1/C3/A4/A5 gene cluster with familial combined hyper-lipidaemia in Hong Kong Chinese. Atherosclerosis. 2009 (in press)
|
|
|
56) Volcik KA, Barkley RA, Hutchinson RG, et al. Apolipoprotein E polymorphisms predict low density lipoprotein cholesterol levels and carotid artery wall thickness but not incident coronary heart disease in 12, 491 ARIC study participants. Am J Epidemiol. 2006; 164: 342-8
|
|
|
57) Ward H, Mitrou PN, Bowman R, et al. APOE genotype, lipids, and coronary heart disease risk: a prospective population study. Arch Intern Med. 2009; 169: 1424-9
|
|
|
58) Kawashiri MA, Higashikata T, Takata M, et al. Type III hyperlipoproteinemia exaggerated by Sheehan's syndrome with advanced systemic atherosclerosis: a 28-year clinical course. Circ J. 2005; 69: 746-51
|
|
|
59) Kawashiri MA, Higashikata T, Mizuno M, et al. Long-term course of lipoprotein lipase (LPL) deficiency due to homozygous LPL(Arita) in a patient with recurrent pancreatitis, retained glucose tolerance, and atherosclerosis. J Clin Endocrinol Metab. 2005; 90: 6541-4
|
|
|
60) Rahalkar AR, Giffen F, Har B, et al. Novel LPL mutations associated with lipoprotein lipase deficiency: two case reports and a literature review. Can J Physiol Pharmacol. 2009; 87: 151-60
|
|
|
61) Sagoo GS, Tatt I, Salanti G, et al. Seven lipo-protein lipase gene polymorphisms, lipid fractions, and coronary disease: a HuGE association review and meta-analysis. Am J Epidemiol. 2008; 168: 1233-46
|
|
|
62) Shulman AI, Mangelsdorf DJ. Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med. 2005; 353: 604-15
|
|
|
63) Nohara A, Kobayashi J, Mabuchi H. Retinoid X receptor heterodimer variants and cardiovascular risk factors. J Atheroscler Thromb. 2009; 16: 303-18
|
|
|
64) Heikkinen S, Argmann C, Feige JN, et al. The Pro12Ala PPARgamma2 variant determines metabolism at the gene-environment interface. Cell Metab. 2009; 9: 88-98
|
|
|
65) Knoblauch H, Busjahn A, Muller-Myhsok B, et al. Peroxisome proliferator-activated receptor gamma gene locus is related to body mass index and lipid values in healthy nonobese subjects. Arterioscler Thromb Vasc Biol. 1999; 19: 2940-4
|
|
|
66) Pei W, Baron H, Muller-Myhsok B, et al. Support for linkage of familial combined hyperlipidemia to chromosome 1q21-q23 in Chinese and Ger-man families. Clin Genet. 2000; 57: 29-34
|
|
|
67) Haugen BR, Jensen DR, Sharma V, et al. Retinoid X receptor gamma-deficient mice have increased skeletal muscle lipoprotein lipase activity and less weight gain when fed a high-fat diet. Endocrinology. 2004; 145: 3679-85
|
|
|
68) Nohara A, Kawashiri MA, Claudel T, et al. High frequency of a retinoid X receptor gamma gene variant in familial combined hyperlipidemia that associates with atherogenic dyslipidemia. Arterioscler Thromb Vasc Biol. 2007; 27: 923-8
|
|
|
69) Wang J, Williams CM, Hegele RA. Compound heterozygosity for two non-synonymous polymor-phisms in NPC1L1 in a non-responder to ezetimibe. Clin Genet. 2005; 67: 175-7
|
|
|
70) Cohen JC, Pertsemlidis A, Fahmi S, et al. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc Natl Acad Sci U S A. 2006; 103: 1810-5
|
|
|
71) Martin B, Solanas-Barca M, Garcia-Otin AL, et al. An NPC1L1 gene promoter variant is associated with autosomal dominant hypercholesterolemia. Nutr Metab Cardiovasc Dis. 2009 (in press)
|
|
|
72) Pollex RL, Hegele RA. Genetic determinants of plasma lipoproteins. Nat Clin Pract Cardiovasc Med. 2007; 4: 600-9
|
|
|
73) Cohen JC, Kiss RS, Pertsemlidis A, et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science. 2004; 305: 869-72
|
|
|
74) Goode EL, Cherny SS, Christian JC, et al. Heritability of longitudinal measures of body mass index and lipid and lipoprotein levels in aging twins. Twin Res Hum Genet. 2007; 10: 703-11
|
|
|
75) Kiss RS, Kavaslar N, Okuhira K, et al. Genetic etiology of isolated low HDL syndrome: incidence and heterogeneity of efflux defects. Arterioscler Thromb Vasc Biol. 2007; 27: 1139-45
|
|
|
76) Boekholdt SM, Souverein OW, Tanck MW, et al. Common variants of multiple genes that control reverse cholesterol transport together explain only a minor part of the variation of HDL cho-lesterol levels. Clin Genet. 2006; 69: 263-70
|
|
|
77) Holleboom AG, Vergeer M, Hovingh GK, et al. The value of HDL genetics. Curr Opin Lipidol. 2008; 19: 385-94
|
|
|
78) Brown ML, Inazu A, Hesler CB, et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature. 1989; 342: 448-51
|
|
|
79) Inazu A, Brown ML, Hesler CB, et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med. 1990; 323: 1234-8
|
|
|
80) Inazu A, Jiang XC, Haraki T, et al. Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high density lipoprotein cholesterol. J Clin Invest. 1994; 94: 1872-82
|
|
|
81) Moriyama Y, Okamura T, Inazu A, et al. A low prevalence of coronary heart disease among subjects with increased high-density lipoprotein cholesterol levels, including those with plasma cholesteryl ester transfer protein deficiency. Prev Med. 1998; 27(5 Pt 1): 659-67
|
|
|
82) Hirano K, Yamashita S, Nakajima N, et al. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not asso-ciated with longevity. Arterioscler Thromb Vasc Biol. 1997; 17: 1053-9
|
|
|
83) Brousseau ME, O'Connor JJ Jr, Ordovas JM, et al. Cholesteryl ester transfer protein TaqI B2B2 genotype is associated with higher HDL choles-terol levels and lower risk of coronary heart disease end points in men with HDL deficiency: Veterans Affairs HDL Cholesterol Intervention Trial. Arterioscler Thromb Vasc Biol. 2002; 22: 1148-54
|
|
|
84) Curb JD, Abbott RD, Rodriguez BL, et al. A prospective study of HDL-C and cholesteryl ester transfer protein gene mutations and the risk of coronary heart disease in the elderly. J Lipid Res. 2004; 45: 948-53
|
|
|
85) Koropatnick TA, Kimbell J, Chen R, et al. A prospective study of high-density lipoprotein cholesterol, cholesteryl ester transfer protein gene variants, and healthy aging in very old Japanese-american men. J Gerontol A Biol Sci Med Sci. 2008; 63: 1235-40
|
|
|
86) Agerholm-Larsen B, Tybjaerg-Hansen A, Schnohr P, et al. Common cholesteryl ester transfer protein mutations, decreased HDL cholesterol, and possible decreased risk of ischemic heart disease: The Copenhagen City Heart Study. Circulation. 2000; 102: 2197-203
|
|
|
87) Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007; 357: 2109-22
|
|
|
88) Vergeer M, Bots ML, van Leuven SI, et al. Cholesteryl ester transfer protein inhibitor torcetrapib and off-target toxicity: a pooled analysis of the rating atherosclerotic disease change by imaging with a new CETP inhibitor (RADIANCE) trials. Circulation. 2008; 118: 2515-22
|
|
|
89) Nicholls SJ, Tuzcu EM, Brennan DM, et al. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation. 2008; 118: 2506-14
|
|
|
90) Cannon CP, Dansky HM, Davidson M, et al. Design of the DEFINE trial: determining the EFficacy and tolerability of CETP INhibition with AnacEtrapib. Am Heart J. 2009; 158: 513-9
|
|
|
91) Frank PG, Marcel YL. Apolipoprotein A-I: structure-function relationships. J Lipid Res. 2000; 41: 853-72
|
|
|
92) Sirtori CR, Calabresi L, Franceschini G, et al. Cardiovascular status of carriers of the apo-lipoprotein A-I(Milano) mutant: the Limone sul Garda study. Circulation. 2001; 103: 1949-54
|
|
|
93) Ibanez B, Vilahur G, Cimmino G, et al. Rapid change in plaque size, composition, and molecu-lar footprint after recombinant apolipoprotein A-I Milano (ETC-216) administration: magnetic resonance imaging study in an experimental model of athero-sclerosis. J Am Coll Cardiol. 2008; 51: 1104-9
|
|
|
94) Parolini C, Marchesi M, Lorenzon P, et al. Dose-related effects of repeated ETC-216 (recombinant apolipoprotein A-I Milano/1-palmitoyl-2-oleoyl phosphatidylcholine complexes) administrations on rabbit lipid-rich soft plaques: in vivo assess-ment by intravascular ultrasound and magnetic resonance imaging. J Am Coll Cardiol. 2008; 51: 1098-103
|
|
|
95) Yang XP, Becker LC, Becker DM, et al. Mutations in Scavenger Receptor-BI/II Result in a novel dyslipidemia, with increased HDL and lipopro-tein(a). Circulation. 2008; 118(18 Suppl): S559
|
|
|
96) West M, Greason E, Kolmakova A, et al. Scavenger receptor class B type I protein as an independent predictor of high-density lipoprotein cholesterol levels in subjects with hyperalphalipo-proteinemia. J Clin Endocrinol Metab. 2009; 94: 1451-7
|
|
|
97) Rust S, Rosier M, Funke H, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999; 22: 352-5
|
|
|
98) Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 1999; 22: 347-51
|
|
|
99) Brooks-Wilson A, Marcil M, Clee SM, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999; 22: 336-45
|
|
|
100) Guo Z, Inazu A, Yu W, et al. Double deletions and missense mutations in the first nucleotide-binding fold of the ATP-binding cassette trans-porter A1 (ABCA1) gene in Japanese patients with Tangier disease. J Hum Genet. 2002; 47: 325-9
|
|
|
101) Probst MC, Thumann H, Aslanidis C, et al. Screening for functional sequence variations and mutations in ABCA1. Atherosclerosis. 2004; 175: 269-79
|
|
|
102) Frikke-Schmidt R, Nordestgaard BG, Jensen GB, et al. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest. 2004; 114: 1343-53
|
|
|
103) Frikke-Schmidt R, Nordestgaard BG, Stene MC, et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008; 299: 2524-32
|
|
|
104) Frikke-Schmidt R. Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population. Atherosclerosis. 2009 (in press)
|
|
|
105) von Eckardstein A. Differential diagnosis of familial high density lipoprotein deficiency syndromes. Atherosclerosis. 2006; 186: 231-9
|
|
|
106) Calabresi L, Baldassarre D, Castelnuovo S, et al. Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation. 2009; 120: 628-35
|
|
|
107) Lambert G, Chase MB, Dugi K, et al. Hepatic lipase promotes the selective uptake of high density lipoprotein-cholesteryl esters via the scavenger receptor B1. J Lipid Res. 1999; 40: 1294-303
|
|
|
108) van Deursen D, Jansen H, Verhoeven AJ. Glucose increases hepatic lipase expression in HepG2 liver cells through upregulation of upstream stimulatory factors 1 and 2. Diabetologia. 2008; 51: 2078-87
|
|
|
109) Young EK, Chatterjee C, Sparks DL. HDL-ApoE content regulates the displacement of hepatic lipase from cell surface proteoglycans. Am J Pathol. 2009; 175: 448-57
|
|
|
110) Dugi KA, Brandauer K, Schmidt N, et al. Low hepatic lipase activity is a novel risk factor for coronary artery disease. Circulation. 2001; 104: 3057-62
|
|
|
111) Imamura S, Kobayashi J, Nakajima K, et al. A novel method for measuring human lipoprotein lipase and hepatic lipase activities in postheparin plasma. J Lipid Res. 2008; 49: 1431-7
|
|
|
112) Grarup N, Andreasen CH, Andersen MK, et al. The -250G>A promoter variant in hepatic lipase associates with elevated fasting serum high-density lipoprotein cholesterol modulated by interaction with physical activity in a study of 16, 156 Danish subjects. J Clin Endocrinol Metab. 2008; 93: 2294-9
|
|
|
113) Isaacs A, Aulchenko YS, Hofman A, et al. Epistatic effect of cholesteryl ester transfer protein and hepatic lipase on serum high-density lipoprotein cholesterol levels. J Clin Endocrinol Metab. 2007; 92: 2680-7
|
|
|
114) Johannsen TH, Kamstrup PR, Andersen RV, et al. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease. J Clin Endocrinol Metab. 2009; 94: 1264-73
|
|
|
115) Fazio S, Linton MF. Elevated high-density lipoprotein (HDL) levels due to hepatic lipase mutations do not reduce cardiovascular disease risk: another strike against the HDL dogma. J Clin Endocrinol Metab. 2009; 94: 1081-3
|
|
|
116) Sabatti C, Service SK, Hartikainen AL, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder popu-lation. Nat Genet. 2009; 41: 35-46
|
|
|
117) Aulchenko YS, Ripatti S, Lindqvist I, et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet. 2009; 41: 47-55
|
|
|
118) Kathiresan S, Willer CJ, Peloso GM, et al. Common variants at 30 loci contribute to poly-genic dyslipidemia. Nat Genet. 2009; 41: 56-65
|
|
|
119) Manolio TA. Cohort studies and the genetics of complex disease. Nat Genet. 2009; 41: 5-6
|
|
|
120) Check Hayden E. Genomics shifts focus to rare diseases. Nature. 2009; 461: 458
|
|
|