1) Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. Embo J. 2006; 25: 1419-25
|
|
|
2) Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004; 113: 1408-18
|
|
|
3) Yamagata K, Daitoku H, Shimamoto Y, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem. 2004; 279: 23158-65
|
|
|
4) Borgius LJ, Steffensen KR, Gustafsson JA, et al. Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP. J Biol Chem. 2002; 277: 49761-6
|
|
|
5) Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeo-stasis. J Clin Invest. 2006; 116: 1102-9
|
|
|
6) Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyper-glycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A. 2006; 103: 1006-11
|
|
|
7) Stayrook KR, Bramlett KS, Savkur RS, et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology. 2005; 146: 984-91
|
|
|
8) Kim YD, Park KG, Lee YS, et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase dependent regulation of the orphan nuclear receptor SHP. Diabetes. 2008; 57: 306-14
|
|
|
9) Zhang Y, Castellani LW, Sinal CJ, et al. Per-oxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 2004; 18: 157-69
|
|
|
10) Duran-Sandoval D, Mautino G, Martin G, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004; 53: 890-8
|
|
|
11) Cariou B, van Harmelen K, Duran-Sandoval D, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem. 2006; 281: 11039-49
|
|
|
12) Rizzo G, Disante M, Mencarelli A, et al. The farnesoid X receptor promotes adipocyte differ-entiation and regulates adipose cell function in vivo. Mol Pharmacol. 2006; 70: 1164-73
|
|
|
13) Wang L, Liu J, Saha P, et al. The orphan nuclear receptor SHP regulates PGC-1alpha expression and energy production in brown adipocytes. Cell Metab. 2005; 2: 227-38
|
|
|
14) Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006; 439: 484-9
|
|
|
15) Cariou B, Bouchaert E, Abdelkarim M, et al. FXR-deficiency confers increased susceptibility to torpor. FEBS Lett. 2007; 581: 5191-8
|
|
|
16) Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004; 20: 563-9
|
|
|
17) Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005; 2: 217-25
|
|
|
18) Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005; 115: 1627-35
|
|
|
19) Badman MK, Pissios P, Kennedy AR, et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007; 5: 426-37
|
|
|
20) Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007; 5: 415-25
|
|
|
21) Yu C, Wang F, Kan M, et al. Elevated cholesterol metabolism and bile acid synthesis in mice lack-ing membrane tyrosine kinase receptor FGFR4. J Biol Chem. 2000; 275: 15482-9
|
|
|
22) Lundasen T, Galman C, Angelin B, et al. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modu-lates hepatic bile acid synthesis in man. J Intern Med. 2006; 260: 530-6
|
|
|
23) Tomlinson E, Fu L, John L, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002; 143: 1741-7
|
|
|
24) Fu L, John LM, Adams SH, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004; 145: 2594-603
|
|
|
25) Kurosu H, Choi M, Ogawa Y, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines meta-bolic activity of FGF19 and FGF21. J Biol Chem. 2007; 282: 26687-95
|
|
|
26) Huang X, Yang C, Luo Y, et al. FGFR4 prevents hyperlipidemia and insulin resistance but under-lies high-fat diet induced fatty liver. Diabetes. 2007; 56: 2501-10
|
|
|
27) Baxter JD, Webb P, Grover G, et al. Selective activation of thyroid hormone signaling pathways by GC-1: a new approach to controlling choles-terol and body weight. Trends Endocrinol Metab. 2004; 15: 154-7
|
|
|
28) Sato H, Genet C, Strehle A, et al. Antihyper-glycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem Biophys Res Commun. 2007; 362: 793-8
|
|
|
29) Virtanen KA, Lidell ME, Orava J, et al. Func-tional brown adipose tissue in healthy adults. N Engl J Med. 2009; 360: 1518-25
|
|
|
30) van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009; 360: 1500-8
|
|
|
31) Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005; 329: 386-90
|
|
|
32) Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009; 10: 167-77
|
|
|
33) Kobayashi M, Ikegami H, Fujisawa T, et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes. 2007; 56: 239-47
|
|
|
34) Suzuki T, Oba K, Futami S, et al. Blood glucose-lowering activity of colestimide in patients with type 2 diabetes and hypercholesterolemia: a case-control study comparing colestimide with acarbose. J Nippon Med Sch. 2006; 73: 277-84
|
|
|
35) Yamakawa T, Takano T, Utsunomiya H, et al. Effect of colestimide therapy for glycemic control in type 2 diabetes mellitus with hyperchole-sterolemia. Endocr J. 2007; 54: 53-8
|
|
|
36) Zieve FJ, Kalin MF, Schwartz SL, et al. Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther. 2007; 29: 74-83
|
|
|