1) Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn. 2008; 237: 18-27
|
|
|
2) Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001; 2: REVIEWS3005
|
|
|
3) Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004; 20: 563-9
|
|
|
4) Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007; 27: 3417-28
|
|
|
5) Jones S. Mini-review. endocrine actions of fibroblast growth factor 19. Mol Pharm. 2008; 5: 42-8
|
|
|
6) Kurose H, Bito T, Adachi T, et al. Expression of Fibroblast growth factor 19 (Fgf19) during chicken embryogenesis and eye development, compared with Fgf15 expression in the mouse. Gene Expr Patterns. 2004; 4: 687-93
|
|
|
7) Wright TJ, Ladher R, McWhirter J, et al. Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction. Dev Biol. 2004; 269: 264-75
|
|
|
8) Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006; 281: 6120-3
|
|
|
9) Ogawa Y, Kurosu H, Yamamoto M, et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A. 2007; 104: 7432-7
|
|
|
10) Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006; 444: 770-4
|
|
|
11) Nagano M, Kuroki S, Mizuta A, et al. Regulation of bile acid synthesis under reconstructed entero-hepatic circulation in rats. Steroids. 2004; 69: 701-9
|
|
|
12) Pandak WM, Li YC, Chiang JY, et al. Regulation of cholesterol 7 alpha-hydroxylase mRNA and transcriptional activity by taurocholate and cholesterol in the chronic biliary diverted rat. J Biol Chem. 1991; 266: 3416-21
|
|
|
13) Kalaany NY and Mangelsdorf DJ. LXRS and FXR: the yin and yang of cholesterol and fat metabo-lism. Annu Rev Physiol. 2006; 68: 159-91
|
|
|
14) Holt JA, Luo G, Billin AN, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 2003; 17: 1581-91
|
|
|
15) Yu C, Wang F, Kan M, et al. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem. 2000; 275: 15482-9
|
|
|
16) Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005; 2: 217-25
|
|
|
17) Li J, Pircher PC, Schulman IG, et al. Regulation of complement C3 expression by the bile acid receptor FXR. J Biol Chem. 2005; 280: 7427-34
|
|
|
18) Lundasen T, Galman C, Angelin B, et al. Cir-culating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modu-lates hepatic bile acid synthesis in man. J Intern Med. 2006; 260: 530-6
|
|
|
19) Nishimura T, Nakatake Y, Konishi M, et al. Identification of a novel FGF, FGF-21, prefer-entially expressed in the liver. Biochim Biophys Acta. 2000; 1492: 203-6
|
|
|
20) Kim I, Ahn SH, Inagaki T, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res. 2007; 48: 2664-72
|
|
|
21) Ito S, Fujimori T, Furuya A, et al. Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J Clin Invest. 2005; 115: 2202-8
|
|
|
22) Kurosu H, Choi M, Ogawa Y, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007; 282: 26687-95
|
|
|
23) Choi M, Moschetta A, Bookout AL, et al. Identification of a hormonal basis for gallbladder filling. Nat Med. 2006; 12: 1253-5
|
|
|
24) Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005; 115: 1627-35
|
|
|
25) Badman MK, Pissios P, Kennedy AR, et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007; 5: 426-37
|
|
|
26) Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007; 5: 415-25
|
|
|
27) Lundasen T, Hunt MC, Nilsson LM, et al. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun. 2007; 360: 437-40
|
|
|
28) Hotta Y, Nakamura H, Konishi M, et al. Fibro-blast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology. 2009; 150: 4625-33
|
|
|
29) Potthoff MJ, Inagaki T, Satapati S, et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A. 2009; 106: 10853-8
|
|
|
30) Inagaki T, Lin VY, Goetz R, et al. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab. 2008; 8: 77-83
|
|
|
31) Galman C, Lundasen T, Kharitonenkov A, et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab. 2008; 8: 169-74
|
|
|
32) Zhang X, Yeung DC, Karpisek M, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008; 57: 1246-53
|
|
|
33) Dostalova I, Kavalkova P, Haluzikova D, et al. Plasma concentrations of fibroblast growth fac-tors 19 and 21 in patients with anorexia nervosa. J Clin Endocrinol Metab. 2008; 93: 3627-32
|
|
|
34) Kharitonenkov A, Wroblewski VJ, Koester A, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007; 148: 774-81
|
|
|
35) Kharitonenkov A, Dunbar JD, Bina HA, et al. FGF-21/FGF-21 receptor interaction and activa-tion is determined by betaKlotho. J Cell Physiol. 2008; 215: 1-7
|
|
|
36) White KE, Evans WE, O'Riordan JLH, et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000; 26: 345-8
|
|
|
37) Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000; 277: 494-8
|
|
|
38) Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001; 98: 6500-5
|
|
|
39) Shimada T, Muto T, Urakawa I, et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteo-lytic cleavage and causes hypophospha-temia in vivo. Endocrinology. 2002; 143: 3179-82
|
|
|
40) White KE, Carn G, Lorenz-Depiereux B, et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001; 60: 2079-86
|
|
|
41) Garringer HJ, Fisher C, Larsson TE, et al. The role of mutant UDP-N-acetyl-alpha-D-galactos-amine-polypeptide N-acetylgalactosaminyl trans-ferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis. J Clin Endocrinol Metab. 2006; 91: 4037-42
|
|
|
42) Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phos-phate and vitamin D metabolism. J Clin Invest. 2004; 113: 561-8
|
|
|
43) Segawa H, Kawakami E, Kaneko I, et al. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch. 2003; 446: 585-92
|
|
|
44) Segawa H, Yamanaka S, Ohno Y, et al. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol. 2007; 292: F769-79
|
|
|
45) Shimada T, Urakawa I, Yamazaki Y, et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun. 2004; 314: 409-14
|
|
|
46) Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007; 117: 4003-8
|
|
|
47) Krajisnik T, Bjorklund P, Marsell R, et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol. 2007; 195: 125-31
|
|
|
48) Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390: 45-51
|
|
|