1) Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of young. N Engl J Med. 2001; 345: 971-80
|
|
|
2) Kadowaki T, Kadowaki H, Mori Y et al. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Engl J Med. 1994; 330: 962-8
|
|
|
3) Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARγ Pro 12Ala polymorphism is associated with decreased risk of type2 dia-betes. Nat Genet. 2000; 26: 76-80
|
|
|
4) Nemoto M, Sasaki T, Deeb SS, et al. Differential effect of PPARgamma2 variants in the develop-ment of type 2 diabetes between native Japanese and Japanese Americans. Diabetes Res Clin Pract. 2002; 57: 131-7
|
|
|
5) Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007; 445: 881-5
|
|
|
6) Scott LJ, Moohlke KL, Bonneycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007; 316: 1341-5
|
|
|
7) Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 dia-betes. Science. 2007; 316: 1336-41
|
|
|
8) Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007; 316: 1331-6
|
|
|
9) Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007; 39: 770-5
|
|
|
10) Grant SF, Thorleifsson G, Reynisdottir I, et al. Variation of transcription factor 7-kike 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006; 38: 320-3
|
|
|
11) Lyssenko V, Lupi R, Marchetti P, et al. Mecha-nisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007; 117: 2155-63
|
|
|
12) Nicolson TJ, Bellomo EA, Wijesekara N, et al. Insulin storage and glucose homostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009; 58: 2070-83
|
|
|
13) Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxo-glutarate-dependent nucleic acid demethylase. Science. 2007; 318: 1469-72
|
|
|
14) Miyake K, Horikawa Y, Hara K, et al. Association of TCF7L2 polymorphisms with susceptibility to type2 diabetes in 4,087 Japanese subjects. J Hum Genet. 2008; 53: 147-80
|
|
|
15) Horikawa Y, Miyake K, Yasuda K, et al. Repli-cation of genome-wide association studies of type 2 diabetes susceptibility in Japan. J Clin Endocrinol Metab. 2008; 93: 3136-41
|
|
|
16) Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008; 40: 1029-97
|
|
|
17) Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008; 40: 1098-102
|
|
|
18) Tan JT, Nurbaya S, Gardner D, et al. Genetic variation in KCNQ1 associates with fasting glucose and beta-cell function: a study of 3. 734 subjects comprising three ethnicities living in Singapore. Diabetes. 2009; 52: 1445-9
|
|
|
19) Hu C, Wang C, Zhang R, et al. Variations in KCNQ1 are associated with type 2 diabetes and beta cell function in a Chinese population. Diabetes. 2009; 52: 1322-5
|
|
|
20) Miissig K, Staiger H, Machicao F, et al. Associa-tion of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion. Diabetes. 2009; 58: 1715-20
|
|
|
21) Holmkvist J, Banasik K, Andersen G, et al. The type 2 diabetes associated with minor allele of rs2237895 KCNQ1 associates with reduced insulin release following an oral glucose load. PLoS One. 2009; 4: e872
|
|
|
22) Jespersen T, Grunnet M, Olesen S-P. The KCNQ1 potassium channel: from gene to physiological function. Physiology. 2005; 20: 408-16
|
|
|
23) Ullrich S, et al. Effects of Iks channel inhibitors in insulin-secreting INS-1 cells. Pflugers Arch. 2005; 451: 428-36
|
|
|
24) Casmiro MC, Knollmann BC, Ebert SN, et al. Targeted disrcrption of the Kcnq1 gene produces a monse model of Jewell and Lange-Nielsen Syndrome. Proc Natl Acad Sci U S A. 2001; 98: 2526-31
|
|
|
25) Lee MP, Ravenel JD, Hu RJ, et al. Targeted disruption of the Lvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest. 2000; 106: 1447-55
|
|
|
26) Boini KM, Graf D, Henninge AM, et al. Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1. Am J Physiol. 2009; 296: R1695-721
|
|
|
27) Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008; 40: 638-45
|
|
|
28) Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in Diabetes Prevention Program. N Engl J Med. 2006; 355: 241-50
|
|
|
29) Van Hoek M, Dehghan A, Witteman JC, et al. Predicting type 2 diabetes based on polymor-phisms from genome-wide association studies: a population-based study. Diabetes. 2008; 57: 3122-8
|
|
|
30) Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008; 359: 2208-19
|
|
|
31) Lyssenko V, Jonsson A, Almgren P, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008; 359: 2220-32
|
|
|
32) Miyake K, Yang W, Hara K, et al. Construction of a prediction model for type 2 diabetes mellitus in the Japanese population based on 11 genes with strong evidence of the addociation. J Hum Genet. 2009; 54: 236-41
|
|
|
33) Pearson ER, Donnelly LA, Kimber C, et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas, A GoDARTs study. Diabetes. 2007; 56: 2178-82
|
|
|