1) Matschinsky FM, Magnuson MA, Zelent D, et al. The network of glucokinase-expressing cells in glucose homeostasis and the potential of gluco-kinase activators for diabetes therapy. Diabetes. 2006; 55: 1-12
|
|
|
2) Liang Y, Najafi H, Smith RM, et al. Concordant glucose induction of glucokinase, glucose usage, and glucose-stimulated insulin release in pan-creatic islets maintained in organ culture. Diabetes. 1992; 41: 792-806
|
|
|
3) Ferre T, Riu E, Bosch F, et al. Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. FASEB J. 1996; 10: 1213-8
|
|
|
4) Terauchi Y, Sakura H, Yasuda K, et al. Pancreatic beta-cell-specific targeted disruption of gluco-kinase gene. Diabetes mellitus due to defective insulin secretion to glucose. J Biol Chem. 1995; 270: 30253-6
|
|
|
5) Postic C, Shiota M, Niswender KD, et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreaticβcell-specific gene knock-outs using Cre recombinase. J Biol Chem. 1999; 274: 305-15
|
|
|
6) Niswender KD, Postic C, Jetton TL, et al. Cell-specific expression and regulation of a gluco-kinase gene locus transgene. J Biol Chem. 1997; 272: 22564-9
|
|
|
7) Shiota M, Postic C, Fujimoto Y, et al. Glucokinase gene locus transgenic mice are resistant to the development of obesity-induced type 2 diabetes. Diabetes. 2001; 50: 622-9
|
|
|
8) Matschinsky, FM. Assessing the potential of glucokinase activators in diabetes therapy. Nat Rev Drug Discov. 2009; 8: 399-416
|
|
|
9) Froguel P, Zouali H, Vionnet N, et al. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med. 1993; 328: 697-702
|
|
|
10) Njolstad PR, Sagen JV, Bjorkhaug L, et al. Permanent neonatal diabetes caused by gluco-kinase deficiency: inborn error of the glucose-insulin signaling pathway. Diabetes. 2003; 52: 2854-60
|
|
|
11) Gloyn AL, Noordam K, Willemsen MA, et al. Insights into the biochemical and genetic basis of glucokinase activation from naturally occurring hypoglycemia mutations. Diabetes. 2003; 52: 2433-40
|
|
|
12) Grimsby J, Sarabu R, Corbett WL, et al. Allosteric activators of glucokinase: potential role in dia-betes therapy. Science. 2003; 301: 370-3
|
|
|
13) Efanov AM, Barrett DG, Brenner MB, et al. A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology. 2005; 146: 3696-701
|
|
|
14) Futamura M, Hosaka H, Kadotani A, et al. An allosteric activator of glucokinase impairs the interaction of glucokinase and glucokinase regu-latory protein and regulates glucose metabolism. J Biol Chem. 2006; 281: 37668-74
|
|
|
15) Fyfe MC, White JR, Taylor A, et al. Glucokinase activator PSN-GK1 displays enhanced antihyper-glycaemic and insulinotropic actions. Diabetologia. 2007; 50: 1277-87
|
|
|
16) Nakamura A, Terauchi Y, Ohyama S, et al. Impact of small molecule glucokinase activator on glucose metabolism and beta cell mass. Endocrinology. 2009; 150: 1147-54
|
|
|
17) Zhai S, Mulligan ME, Grimsby J, et al. Phase I assessment of a novel glucose activator RO4389620 in healthy male volunteers. Diabetologia. 2008; 51 Suppl 1: 372
|
|
|
18) Bonadonna RC, Kapitza C, Heise T, et al. Glucokinase activator RO4389620 improves beta cell function and plasma glucose indexes in patients with type 2 diabetes. Diabetologia. 2008; 51 Suppl 1: 371
|
|
|
19) Johnson D, Shepherd RM, Gill D, et al. Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a gluco-kinase activator. Diabetes. 2007; 56: 1694-702
|
|
|
20) Chu CA, Fujimoto Y, Igawa K, et al. Rapid translocation of hepatic glucokinase in response to intraduodenal glucose infusion and changes in plasma glucose and insulin in conscious rats. Am J Physiol Gastrointest Liver Physiol. 2004; 286: G627-34
|
|
|
21) Rhodes CJ. Type 2 diabetes-a matter ofβ-cell life and death? Science. 2005; 307: 380-4
|
|
|
22) Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003; 52: 102-10
|
|
|
23) Sakuraba H, Mizukami H, Yagihashi N, et al. Reduced beta-cell mass and expression of oxida-tive stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia. 2002; 45: 85-96
|
|
|
24) Terauchi Y, Takamoto I, Kubota N, et al. Gluco-kinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest. 2007; 117: 246-57
|
|
|
25) Weir GC, Bonner-Weir S. A dominant role for glucose in beta cell compensation of insulin resistance. J Clin Invest. 2007; 117: 81-3
|
|
|
26) Reimer MK, Holst JJ, Ahrén B. Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice. Eur J Endocrinol. 2002; 146: 717-27
|
|
|