1) Gear ARL, Polanowska-Grabowska RK. The platelet shape change. In: Platelets in thrombotic and non-thrombotic disorders. 1st ed. Cambridge: Cambridge Univ Press; 2002. p. 319-37
|
|
|
2) 鈴木英紀. 血小板形態のダイナミズムとその制御. In: 血小板のダイナミズムとその制御. 第1版 京都: 金芳堂; 1999. p. 67-80
|
|
|
3) Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res. 2006; 99: 1293-304
|
|
|
4) Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008; 28: 403-12
|
|
|
5) Salsmann A, Schaffner-Reckinger E, Kieffer N. RGD, the Rhoʼd to cell spreading. Eur J Cell Biol. 2006; 85: 249-54
|
|
|
6) Goto S, Ikeda Y, Saldívar E, et al. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest. 1998; 101: 479-86
|
|
|
7) Ruggeri ZM, Dent JA, Saldívar E. Contribution of distinct adhesive interactions to platelet aggregation in flowing blood. Blood. 1999; 94: 172-8
|
|
|
8) Kulkarni S, Dopheide SM, Yap CL, et al. A revised model of platelet aggregation. J Clin Invest. 2000; 105: 783-91
|
|
|
9) Baumgartner HR, Haudenschild C. Adhesion of platelets to subendothelium. Ann NY Acad Sci. 1972; 201: 22-36
|
|
|
10) Jackson SP. The growing complexity of platelet aggregation. Blood. 2007; 109: 5087-95
|
|
|
11) Yuan Y, Kulkarni S, Ulsemer P, et al. The von Willebrand Factor-glycoprotein Ib/V/IX interaction induces actin polymerization and cytoskeletal reorganization in rolling platelets and glycoprotein Ib/V/IX-transfected cells. J Biol Chem. 1999; 274: 36241-51
|
|
|
12) Kuwahara M, Sugimoto M, Tsuji S, et al. Platelet shape changes and adhesion under high shear flow. Arterioscler Thromb Vasc Biol. 2002; 22: 329-34
|
|
|
13) Maxwell MJ, Dopheide SM, Turner SJ, et al. Shear induces a unique series of morphological changes in translocating platelets: effects of morphology on translocation dynamics. Arterioscler Thromb Vasc Biol. 2006; 26: 663-9
|
|
|
14) Savage B, Saldívar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 1996; 84: 289-97
|
|
|
15) Kasirer-Friede A, Cozzi MR, Mazzucato M, et al. Signaling through GP Ib-IX-V activatesαIIbβ3 independently of other receptors. Blood. 2004; 103: 3403-11
|
|
|
16) Bluestein D, Niu L, Schoephoerster RT, et al. Fluid mechanics of arterial stenosis: Relationship to the development of mural thrombus. Ann Biomed Eng. 1997; 25: 344-56
|
|
|
17) Ikeda Y, Handa M, Kawano K, et al. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest. 1991; 87: 1234-40
|
|
|
18) Chauhan AK, Kisucka J, Lamb CB, et al. von Willebrand factor and factor VIII are independently required to form stable occlusive thrombi in injured veins. Blood. 2007; 109: 2424-9
|
|
|
19) Maxwell MJ, Westein E, Nesbitt WS, et al. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood. 2007; 109: 566-76
|
|
|
20) Ni H, Denis CV, Subbarao S, et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest. 2000; 106: 385-92
|
|
|
21) Falati S, Gross P, Merrill-Skoloff G, et al. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med. 2002; 8: 1175-81
|
|
|
22) Nesbitt WS, Westein E, Tovar-Lopez FJ, et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med. 2009; 15: 665-73
|
|
|
23) Jackson SP, Nesbitt WS, Westein E. Dynamics of platelet thrombus formation. J Thromb Haemost. 2009; 7 Suppl 1: 17-20
|
|
|
24) Reininger AJ, Heijnen HFG, Schumann H, et al. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood. 2006; 107: 3537-45
|
|
|
25) Dopheide SM, Maxwell MJ, Jackson SP. Shear-dependent tether formation during platelet translocation on von Willebrand factor. Blood. 2002; 99: 159-67
|
|
|