1) Bagby GC, Lipton JM, Sloand EM, et al. Marrow failure. Hematology Am Soc Hematol Educ Program. 2004: 318-36
|
|
|
2) Campagnoli MF, Garelli E, Quarello P, et al. Molecular basis of Diamond-Blackfan anemia: new findings from the Italian registry and a review of the literature. Haematologica. 2004; 89: 480-9
|
|
|
3) Flygare J, Karlsson S. Diamond-Blackfan anemia: erythropoiesis lost in translation. Blood. 2007; 109: 3152-4
|
|
|
4) Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program. 2007: 29-39
|
|
|
5) Draptchinskaia N, Gustavsson P, Andersson B, et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet. 1999; 21: 169-75
|
|
|
6) Willig TN, Draptchinskaia N, Dianzani I, et al. Mutations in ribosomal protein S19 gene and Diamond Blackfan anemia: wide variations in phenotypic expression. Blood. 1999; 94: 4294-306
|
|
|
7) Gazda HT, Grabowska A, Merida-Long LB, et al. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet. 2006; 79: 1110-8
|
|
|
8) Cmejla R, Cmejlova J, Handrkova H, et al. Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Hum Mutat. 2007; 28: 1178-82
|
|
|
9) Farrar JE, Nater M, Caywood E, et al. Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond-Blackfan anemia. Blood. 2008; 112: 1582-92
|
|
|
10) Gazda HT, Sheen MR, Vlachos A, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet. 2008; 83: 769-80
|
|
|
11) Da Costa L, Narla G, Willig TN, et al. Ribosomal protein S19 expression during erythroid differentiation. Blood. 2003; 101: 318-24
|
|
|
12) Leger-Silvestre I, Caffrey JM, Dawaliby R, et al. Specific role for yeast homologs of the Diamond Blackfan anemia-associated Rps19 protein in ribosome synthesis. J Biol Chem. 2005; 280: 38177-85
|
|
|
13) Choesmel V, Bacqueville D, Rouquette J, et al. Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood. 2007; 109: 1275-83
|
|
|
14) Flygare J, Aspesi A, Bailey JC, et al. Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood. 2007; 109: 980-6
|
|
|
15) Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol. 2000; 110: 768-79
|
|
|
16) Alter BP, Giri N, Savage SA, et al. Cancer in dyskeratosis congenita. Blood. 2009; 113: 6549-57
|
|
|
17) Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature. 1999; 402: 551-5
|
|
|
18) Fogarty PF, Yamaguchi H, Wiestner A, et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet. 2003; 362: 1628-30
|
|
|
19) 山口博樹. テロメア異常と骨髄不全症. 日本臨牀. 2008; 66: 483-9
|
|
|
20) Lee JJ, Kook H, Chung IJ, et al. Telomere length changes in patients with aplastic anaemia. Br J Haematol. 2001; 112: 1025-30
|
|
|
21) Heiss NS, Knight SW, Vulliamy TJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998; 19: 32-8
|
|
|
22) Chen JL, Greider CW. Telomerase RNA structure and function: implications for dyskeratosis congenita. Trends Biochem Sci. 2004; 29: 183-92
|
|
|
23) Cheong C, Hong KU, Lee HW. Mouse models for telomere and telomerase biology. Exp Mol Med. 2003; 35: 141-53
|
|
|
24) 矢ヶ崎 博. Dyskeratosis Congenita (DC) 先天性角化不全症. 分子細胞治療. 2009; 8: 123-8
|
|
|
25) Vulliamy T, Marrone A, Goldman F, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature. 2001; 413: 432-5
|
|
|
26) Armanios M, Chen JL, Chang YP, et al. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl Acad Sci U S A. 2005; 102: 15960-4
|
|
|
27) Savage SA, Giri N, Baerlocher GM, et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet. 2008; 82: 501-9
|
|
|
28) Vulliamy T, Beswick R, Kirwan M, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci U S A. 2008; 105: 8073-8
|
|
|
29) Walne AJ, Vulliamy T, Marrone A, et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet. 2007; 16: 1619-29
|
|
|
30) Walne AJ, Dokal I. Advances in the understanding of dyskeratosis congenita. Br J Haematol. 2009; 145: 164-72
|
|
|
31) Yamaguchi H, Calado RT, Ly H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005; 352: 1413-24
|
|
|
32) Boocock GR, Morrison JA, Popovic M, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet. 2003; 33: 97-101
|
|
|
33) Menne TF, Goyenechea B, Sanchez-Puig N, et al. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat Genet. 2007; 39: 486-95
|
|
|
34) Austin KM, Leary RJ, Shimamura A. The Shwachman-Diamond SBDS protein localizes to the nucleolus. Blood. 2005; 106: 1253-8
|
|
|
35) Dror Y, Freedman MH. Shwachman-Diamond syndrome marrow cells show abnormally increased apoptosis mediated through the Fas pathway. Blood. 2001; 97: 3011-6
|
|
|
36) Watanabe K, Ambekar C, Wang H, et al. SBDS-deficiency results in specific hypersensitivity to Fas stimulation and accumulation of Fas at the plasma membrane. Apoptosis. 2009; 14: 77-89
|
|
|
37) Rujkijyanont P, Watanabe K, Ambekar C, et al. SBDS-deficient cells undergo accelerated apoptosis through the Fas-pathway. Haematologica. 2008; 93: 363-71
|
|
|
38) Mckusick VA, Eldridge R, Hostetler JA, et al. Dwarfism in the Amish. II. Cartilage-hair hypoplasia. Bull Johns Hopkins Hosp. 1965; 116: 285-326
|
|
|
39) Ridanpää M, van Eenennaam H, Pelin K, et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell. 2001; 104; 195-203
|
|
|
40) Kavadas FD, Giliani S, Gu Y, et al. Variability of clinical and laboratory features among patients with ribonuclease mitochondrial RNA processing endoribonuclease gene mutations. J Allergy Clin Immunol. 2008; 122: 1178-84
|
|
|
41) Hirose Y, Nakashima E, Ohashi H, et al. Identification of novel RMRP mutations and specific founder haplotypes in Japanese patients with cartilage-hair hypoplasia. J Hum Genet. 2006; 51: 706-10
|
|
|
42) Martin AN, Li Y. RNase MRP RNA and human genetic diseases. Cell Res. 2007; 17: 219-26
|
|
|
43) Cai T, Aulds J, Gill T, et al. The Saccharomyces cerevisiae RNase mitochondrial RNA processing is critical for cell cycle progression at the end of mitosis. Genetics. 2002; 161: 1029-42
|
|
|
44) Thornley I, Dror Y, Sung L, et al. Abnormal telomere shortening in leucocytes of children with Shwachman-Diamond syndrome. Br J Haematol. 2002; 117: 189-92
|
|
|
45) 伊藤悦朗. Diamond-Blackfan anemiaにおける病因研究の進歩. In: 高久史麿, 他編. Annual Review 血液. 東京: 中外医学社; 2008. p. 66-72
|
|
|
46) Rouquette J, Choesmel V, Gleizes PE. Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. EMBO J. 2005; 24: 2862-72
|
|
|
47) 渡辺健一郎. Shwachman-Diamond症候群. 分子細胞治療. 2009; 8: 105-9
|
|
|