1) Michelakis ED, Wilkins MR, Rabinovitch M. Emerging concepts and translational priorities in pulmonary arterial hypertension. Circulation. 2008; 118: 1486-95
|
|
|
2) Blaukovitsch M, Zabel P, Hauber HP. Vasoproliferation and antiproliferative treatment options in pulmonary arterial hypertension. Recent Pat Cardiovasc Drug Discov. 2009; 4: 142-9
|
|
|
3) Masri FA, Xu W, Comhair SA, et al. Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2007; 293: L548-54
|
|
|
4) Rai PR, Cool CD, King JAC, et al. The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008; 178: 558-64
|
|
|
5) Fujiwara M, Yagi H, Matsuoka R, et al. Implications of mutations of activin receptor-like kinase 1 gene (ALK1) in addition to bone morphogenetic protein receptor II gene (BMPR2) in children with pulmonary arterial hypertension. Circ J. 2008; 72: 127-33
|
|
|
6) Shintani M, Yagi H, Nakayama T, et al. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J Med Genet. 2009; 46: 331-7
|
|
|
7) Perros F, Montani D, Dorfmuller P, et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008; 178: 81-8
|
|
|
8) Hassoun PM, Mouthon L, Barbera JA, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009; 54: S10-9
|
|
|
9) Ghofrani HA, Barst RJ, Benza RL, et al. Future perspectives for the treatment of pulmonary arterial hypertension. JACC. 2009; 54 Suppl: S108-17
|
|
|
10) Schermuly RT, Dony E, Ghofrani HA, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005; 115: 2811-21
|
|
|
11) Pannu J, Asano Y, Nakerakanti S, et al. Smad pathway is activated in systemic sclerosis fibroblasts and is targeted by imatinib mesylate. Arthritis Rheum. 2008; 58: 2528-37
|
|
|
12) Antoniu SA, et al. Targeting platelet-derived growth factor with imatinib in idiopathic pulmonary arterial hypertension. Expert Opin Ther Targets. 2009; 13: 381-3
|
|
|
13) Ribeiro AL, Marcolino MS, Bottencourt HNS, et al. nAn evaluation of the cardiotoxicity of imatinib mesylate. Leuk Res. 2008; 32: 1809-14
|
|
|
14) ten Freyhaus H, Dumitresch D, Bovenschulte H, et al. Significant improvement of right ventricular function by imatinib mesylate in scleroderma-associated pulmonary arterial hypertension. Clin Res Cardiol. 2009; 98: 265-7
|
|
|
15) Kimura S, Egashira K, Nakano K, et al. Local delovery of imatinib mesylate (STI571)-incorporated nanoparticle ex vivo suppresses vein graft neointima formation. Circulation. 2008; 118 Suppl 1: S65-70
|
|
|
16) Peng B, Lloid P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005; 44: 879-94
|
|
|
17) Klein M, Schermuly RT, Ellinghaus P, et al. Combined tyrosine and serine/threonine kinase inhibition by sorafenib prevents progression of experimental pulmonary hypertension and myocardial remodeling. Circulation. 2008; 118: 2081-90
|
|
|
18) Moreno-Vinasco L, Gomberg-Maitland M, Maitland M, et al. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics. 2008; 33: 278-91
|
|
|
19) Wilhelm SM, Adnane L, Newell P, et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancr Ther. 2008; 7: 3129-40
|
|
|
20) Willett CG, Duda DG, Czito BG, et al. Target therapy in rectal cancer. Oncology. 2007; 21: 1055-65
|
|
|
21) Schermuly RT, Stasch JP, Pullamsetti SS, et al. Expression and function of soluble guanylate cyclase in pulmonary arterial hypertension. Eur Respir J. 2008; 32: 881-91
|
|
|
22) Dumitrascu R, Weissmann N, Ghofrani HA, et al. Activation of the soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling. Circulation. 2006; 113: 286-95
|
|
|
23) Grimminger F, Weimann G, Frey R, et al. First acute haemodynamic study of soluble guanylate cyclase stimulator riociguat in pulmonaryn hypertension. Eur Respir J. 2009; 33: 785-92
|
|
|
24) Mittendorf J, Weigand S, Alonso-Alija C, et al. Discovery of riociguat (BAY 63-2521): a potent, oral stimulator of soluble guanylate cyclase for the treatment of pulmonary hypertension. Chem Med Chem. 2009; 4: 853-65
|
|
|
25) Evgenov OV, Kohane DS, Bloch KD, et al. Inhaled agonists of soluble guanylate cyclase induce selective pulmonary vasodilation. Am J Respir Crit Care Med. 2007; 176: 1138-45
|
|
|
26) Lapp H, Mitrovic V, Franz N, et al. Cinaciguat (BAY 58-2667) improves cadiopulmonary hemodynamics in patients with acute decompensated heart failure. Circulation. 2009; 119: 2781-8
|
|
|
27) Rakotoniaina Z, Guerard P, Lirussi F, et al. The protective effect of HMG-CoA reductase inhibitors against monocrotaline-induced pulmonary hypertension in the rat might not be a class effect. Comparison of pravastatin and atorvastatin. Naunyn Schmiedebergers Arch Pharmacol. 2006; 374: 195-206
|
|
|
28) Blaukovitsch M, Zabel P, Hauber HP. Vasoproliferation and antiproliferative treatment options in pulmonary arterial hypertension. Rec Pat Cardiovasc Drug Discov. 2009; 4: 142-9
|
|
|
29) McMurtry MS, Bonnet S, Michelakis ED, et al. Statin therapy, alone or with rapamycin, does not reverse monocrotaline pulmonary arterial hypertension; the rapamysin-atorvastatin-simvastatin study. Am J Physiol Lung Cell Mol Physiol. 2007; 293: L933-40
|
|
|
30) Oka M, Fagan KA, Jones PL, et al. Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol. 2008; 155: 444-54
|
|
|
31) Jiang BH, Tawara S, Abe K, et al. Acute vasodilator effect of fasudil, a Rho-kinase inhibitor, in monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol. 2007; 49: 85-9
|
|
|
32) Ishikura K, Yamada N, Ito M, et al. Beneficial acute effects of Rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J. 2006; 70: 174-8
|
|
|
33) Kozhevnikova VV, Medvedeva NA. Chronic administration of serotonin transporter inhibitor (Fluoxetin) decreases monocrotaline-induced pulmonary hypertension in rats. Eksp Klin Farmakol. 2007; 70: 15-8
|
|
|
34) Hoeper MM, Ghofrani HA, Grimminger F, et al. Dana Point: What is new in the treatment pulmonary hypertension? Dtsch Med Wochenschr. 2008; 133 Suppl 6: S191-5
|
|
|
35) Guilluy C, Eddahibi S, Agard C, et al. RhoA and Rho kinase activation in human pulmonary hypertension. Role of 5-HT signaling. Am J Respir Crit Care Med. 2009: 179: 1151-8
|
|
|
36) Ferreira AJ, Shenoy V, Yamazato Y, et al. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med. 2009; 179: 1048-54
|
|
|
37) Zhao YD, Courtman DW, Deng Y, et al. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res. 2005; 96: 442-50
|
|
|
38) Grigg A, Buchanan M, Whitford H. Late-onset pulmonary arterial hypertension in association with graft-versus-host disease after allogeneic stemm-cell transplantation. Am J Hematol. 2005; 80: 38-42
|
|
|
39) Shantsila E, Watson T, Lip GYH, et al. Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol. 2007; 49: 741-52
|
|
|
40) Diller GD, van Eijl S, Okonko DO, et al. Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation. 2008; 117: 3020-30
|
|
|
41) Wang XX, Zhang FR, Shang YP, et al. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol. 2007; 49: 1566-71
|
|
|
42) Smadja DM, Gaussem P, Mauge L, et al. Circulating endothelial cells. Circulation. 2009; 119: 374-81
|
|
|
43) Raoul W, Wagner-Ballon O, Saber G, et al. Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice. Respir Res. 2007; 8: 8
|
|
|
44) Satoh K, Kagaya Y, Nakano M, et al. Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation. 2006; 113: 1442-50
|
|
|