1) Wollert KC, Meyer GP, Drexler H, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004; 364: 141-8
|
|
|
2) Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006; 355: 1199-209
|
|
|
3) Schachinger V, Erbs S, Zeiher AM, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006; 355: 1210-21
|
|
|
4) Oh H, Bradfute SB, Schneider MD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A. 2003; 100: 12313-8
|
|
|
5) Messina E, De Angelis L, Giacomello A, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004; 95: 911-21
|
|
|
6) Tateishi K, Ashihara E, Matsubara H, et al. Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration. J Cell Sci. 2007; 120: 1791-800
|
|
|
7) Miyahara Y, Nagaya N, Mori H, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006; 12: 459-65
|
|
|
8) Haraguchi, T, Okada K, Okita Y, et al. Controlled release of basic fibroblast growth factor from gelatin hydrogel sheet improves structural and physiological properties of vein graft in rat. Arterioscler Thromb Vasc Biol. 2007; 27: 548-55
|
|
|
9) Takahashi K, Tanabe K, Yamanaka S, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861-72
|
|
|
10) Tateishi-Yuyama E, Matsubara H, Muronara T, et al. Therapeutic anfiogenesis for patients with limb ischemia by autologous transplantation of bone marrow cells: a pilot study and a randomized controlled trial. Lancet. 2002; 360: 427-35
|
|
|
11) Rosenzweig A. Cardiac cell therapy-mixed results from mixed cells. N Engl J Med. 2006; 355: 1274-7
|
|
|
12) Tendera M, Wojciech W, Ratajczak MZ, et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected monocuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J. 2009; 30: 1311-21
|
|
|
13) Assmus B, Honold J, Zeiher AM, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006; 355; 1222-32
|
|
|
14) Ramshorst JV, Bax JJ, Atsma DE, et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA. 2009; 301: 1997-2004
|
|
|
15) Lorusso R, et al. Long-term results of coronary artery bypass grafting procedure in the presence of left ventricular dysfunction and hibernating myocardium. Eur J Cardiothorac Surg. 2001; 20: 937-48
|
|
|
16) Stamm C, Kleine HD, Steinhoff G, et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: Safety and efficacy studies. J Thorac Cardiovasc Surg. 2007: 133: 717-25
|
|
|
17) Menasche P, Alfieri O, Janssens S, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008; 117: 1189-200
|
|
|
18) Gojo S, Kyo S, Ikebuchi K, et al. Cardiac resurrection after bone-marrow-derived mononuclear cell transplantation during left ventricular assist device support. Ann Thorac Surg. 2007; 83: 661-2
|
|
|
19) Miyagawa S, Matsumiya G, Sawa Y, et al. Combined autologous cellular cardiomyoplasty using skeletal myoblasts and bone marrow cells for human ischemic cardiomyopathy with left ventricular assist system implantation: report of a case. Surg Today. 2009; 39: 133-6
|
|
|
20) Nasseri BA, Stamm C, Hetzer R. Intramyocardial delivery of bone marrow mononuclear cells and mechanical assist device implantation in patients with end-stage cardiomyopathy. Cell Transplant. 2007; 16: 941-9
|
|
|
21) Laugwitz KL, Moretti A, Chien KR, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005; 433: 647-53
|
|
|
22) Bearzi C, Rota M, Anversa P, et al. Human cardiac stem cells. Proc Natl Acad Sci U S A. 2007; 104: 14068-73
|
|
|
23) Smith RR, Abraham MR, Marban E, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007; 115: 896-908
|
|
|
24) Tateishi K, et al. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3beta signaling. Biochem Biophys Res Commun. 2007; 352: 635-41
|
|
|
25) Takehara N, et al. Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol. 2008; 52: 1858-65
|
|
|
26) Pouly J, Bruneval P, Menasche P, et al. Cardiac stem cells in the real world. J Thorac Cardiovasc Surg. 2008; 135: 673-8
|
|
|
27) Miyahara Y, Nagaya N, Mori H, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006; 12: 459-65
|
|
|
28) Hoashi T, Matsumiya G, Sawa Y, et al. Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart. J Thorac Cardiovasc Surg. 2009; 138: 460-7
|
|
|
29) Matsuura K, Honda A, Komuro I, et al. Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest. 2009; 119: 2204-17
|
|
|
30) Miura K, Okano H, Yamanaka S, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009; 27: 743-5
|
|
|