1) Harvey RP. Patterning the vertebrate heart. Nat Rev Genet. 2002; 3: 544-56
|
|
|
2) McFadden DG, Olson EN. Heart development: learning from mistakes. Curr Opin Genet Dev. 2002; 12: 328-35
|
|
|
3) Olson EN. Gene regulatory networks in the evolution and development of the heart. Science. 2006; 313: 1922-7
|
|
|
4) Alsan BH, Schultheiss TM. Regulation of avian cardiogenesis by Fgf8 signaling. Development. 2002; 129: 1935-43
|
|
|
5) Reese DE, Hall CE, Mikawa T. Negative regulation of midline vascular development by the notochord. Dev Cell. 2004; 6: 699-708
|
|
|
6) Marvin MJ, Di RG, Gardiner A, et al. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev. 2001; 15: 316-27
|
|
|
7) Schneider, VA, Mercola M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev. 2001; 15: 304-15
|
|
|
8) Tzahor E, Lassar AB. Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev. 2001; 15: 255-60
|
|
|
9) Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005; 6: 826-35
|
|
|
10) Schoenebeck JJ, Keegan BR, Yelon D. Vessel and blood specification override cardiac potential in anterior mesoderm. Dev Cell. 2007; 13: 254-67
|
|
|
11) Peterkin T, Gibson A, Patient R. Common genetic control of haemangioblast and cardiac development in zebrafish. Development. 2009; 136: 1465-74
|
|
|
12) Chen JN, Haffter P, Odenthal J, et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development. 1996; 123: 293-302
|
|
|
13) Stainier DY, Fouquet B, Chen JN, et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development. 1996; 123: 285-92
|
|
|
14) Alexander J, Stainier DY, Yelon D. Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning. Dev Genet. 1998; 22: 288-99
|
|
|
15) Dickmeis T, Mourrain P, Saint-Etienne L, et al. A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev. 2001; 15: 1487-92
|
|
|
16) Kikuchi Y, Trinh LA, Reiter JF, et al. The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev. 2000; 14: 1279-89
|
|
|
17) Yelon D, Ticho B, Halpern ME, et al. The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development. 2000; 127: 2573-82
|
|
|
18) Reiter JF, Alexander J, Rodaway A, et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 1999; 13: 2983-95
|
|
|
19) Trinh LA, Stainier DY. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell. 2004; 6: 371-82
|
|
|
20) George EL, Georges-Labouesse EN, Patel-King RS, et al. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 1993; 119: 1079-91
|
|
|
21) George EL, Baldwin HS, Hynes RO. Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood. 1997; 90: 3073-81
|
|
|
22) Kupperman E, An S, Osborne N, et al. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature. 2000; 406: 192-5
|
|
|
23) Kawahara A, Nishi T, Hisano Y, et al. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science. 2009; 323: 524-7
|
|
|
24) Osborne N, Brand-Arzamendi K, Ober EA, et al. The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr Biol. 2008; 18: 1882-8
|
|
|
25) Saba JD, Hla T. Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res. 2004; 94: 724-34
|
|
|
26) Ishii I, Ye X, Friedman B, et al. Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. J Biol Chem. 2002; 277: 25152-9
|
|
|
27) Sakaguchi T, Kikuchi Y, Kuroiwa A, et al. The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development. 2006; 133: 4063-72
|
|
|
28) Matsui T, Raya A, Callol-Massot C, et al. Miles-apart-Mediated regulation of cell-fibronectin interaction and myocardial migration in zebrafish. Nat Clin Pract Cardiovasc Med. 2007; 4 Suppl 1: S77-82
|
|
|
29) Yue Q, Wagstaff L, Yang X, et al. Wnt3a-mediated chemorepulsion controls movement patterns of cardiac progenitors and requires RhoA function. Development. 2008; 135: 1029-37
|
|
|
30) Moeller H, Jenny A, Schaeffer HJ, et al. Diversin regulates heart formation and gastrulation movements in development. Proc Natl Acad Sci U S A. 2006; 103: 15900-5
|
|
|
31) Miyasaka KY, Kida YS, Sato T, et al. Csrp1 regulates dynamic cell movements of the mesendoderm and cardiac mesoderm through interactions with Dishevelled and Diversin. Proc Natl Acad Sci U S A. 2007; 104: 11274-9
|
|
|
32) Saga Y, Miyagawa-Tomita S, Takagi A, et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development. 1999; 126: 3437-47
|
|
|
33) David R, Brenner C, Stieber J, et al. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol. 2008; 10: 338-45
|
|
|
34) Maretto S, Muller PS, Aricescu AR, et al. Ventral closure, headfold fusion and definitive endoderm migration defects in mouse embryos lacking the fibronectin leucine-rich transmembrane protein FLRT3. Dev Biol. 2008; 318: 184-93
|
|
|
35) Compernolle V, Brusselmans K, Franco D, et al. Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1alpha. Cardiovasc Res. 2003; 60: 569-79
|
|
|
36) Nagao K, Taniyama Y, Kietzmann T, et al. HIF-1alpha signaling upstream of NKX2. 5 is required for cardiac development in Xenopus. J Biol Chem. 2008; 283: 11841-9
|
|
|
37) Brown DD, Christine KS, Showell C, et al. Small heat shock protein Hsp27 is required for proper heart tube formation. Genesis. 2007; 45: 667-78
|
|
|
38) Christine KS, Conlon FL. Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline. Dev Cell. 2008; 14: 616-23
|
|
|
39) Li S, Zhou D, Lu MM, et al. Advanced cardiac morphogenesis does not require heart tube fusion. Science. 2004; 305: 1619-22
|
|
|